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Abstract

Low-rank matrix factorizations (LRMFs) are a class of linear models widely used in
various fields such as machine learning, signal processing, and data analysis. These
models approximate a matrix as the product of two smaller matrices, where the left
matrix captures latent features—the most important components of the data—while
the right matrix linearly decomposes the data based on these features. There are
many ways to define what makes a component "important." Standard LRMFs, such
as the truncated singular value decomposition, focus on minimizing the distance be-
tween the original matrix and its low-rank approximation. In this thesis, the notion
of "importance" is closely linked to interpretability and uniqueness, which are key to
obtaining reliable and meaningful results.

This thesis thus focuses on volume-based constraints and regularizations designed
to enhance interpretability and uniqueness. We first introduce two new volume-
constrained LRMFs designed to enhance these properties. The first assumes that
data points are naturally bounded (e.g., movie ratings between 1 and 5 stars) and
can be explained by convex combinations of features within the same bounds, allow-
ing them to be interpreted in the same way as the data. The second model is more
general, constraining the factors to belong to convex polytopes. Then, two variants
of volume-regularized LRMFs are proposed. The first minimizes the volume of the
latent features, encouraging them to cluster closely together, while the second maxi-
mizes the volume of the decompositions, promoting sparse representations. Across all
these models, uniqueness is achieved under the core principle that the factors must
be "sufficiently scattered" within their respective feasible sets.

Motivated by applications such as blind source separation (e.g., hyperspectral
unmixing) and missing data imputation (e.g., in recommender systems), this thesis
also proposes efficient algorithms that make these models scalable and practical for
real-world applications.

3



4



Résumé

Les factorisations matricielles de faible rang (LRMFs) sont des modèles linéaires large-
ment utilisés dans des domaines tels que l’apprentissage automatique, le traitement du
signal et l’analyse de données. Ces modèles approchent une matrice en la décomposant
en produit de deux matrices plus petites : la première capture les caractéristiques
latentes, c’est-à-dire les composantes les plus importantes des données, tandis que
la seconde décompose linéairement les données à partir de ces caractéristiques. Il
existe cependant de nombreuses manières de définir ce qui rend une composante "im-
portante". Les LRMFs classiques, comme la décomposition en valeurs singulières
tronquée, se concentrent sur la minimisation de la distance entre la matrice originale
et son approximation de faible rang. Dans cette thèse, l’importance d’une composante
est étroitement déterminée par l’interprétabilité et l’unicité, des notions clés pour
obtenir des résultats fiables et pertinents.

Cette thèse explore donc des contraintes et régularisations volumiques visant à ren-
forcer l’interprétabilité et l’unicité. Dans un premier temps, nous introduisons deux
nouvelles variantes de LRMFs à contraintes volumiques. La première suppose que les
points du jeu de données sont naturellement bornés (ex: des films notés entre 1 et 5
étoiles) et peuvent être expliqués par des combinaisons convexes de caractéristiques
bornées de la même manière, permettant ainsi de les interpréter comme les données.
Le second modèle est plus général et contraint les facteurs à appartenir à des polytopes
convexes. Par ailleurs, nous proposons deux variantes de LRMF avec régularisation
volumique : la première minimise le volume des caractéristiques latentes, favorisant
ainsi un rapprochement entre elles, tandis que la seconde maximise le volume des
décompositions, encourageant des représentations parcimonieuses. Dans l’ensemble
de ces modèles, l’unicité est assurée par le principe clé selon lequel les facteurs doivent
être "suffisamment dispersés" dans leur ensemble de solutions possibles.

Motivée par des applications telles que la séparation de sources aveugles (par exem-
ple, le démélange hyperspectral) et l’imputation de données manquantes (par exemple,
dans les systèmes de recommandation), cette thèse propose également des algorithmes
efficaces permettant à ces modèles d’être adaptés à des applications réelles.
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Notation

R set of real numbers
R∗ set of real nonzero numbers
R+ set of real nonnegative numbers
Rm set of real column vectors of dimension m
Rm×n set of real matrices of dimension m× n
xi or x(i) i-th entry of the vector x
x(K) subvector x with indices in the set K
A(i, :) i-th row of the matrix A
A(:, j) j-th column of the matrix A
A(i, j) entry of the matrix A indexed by (i, j)
A(:, J) submatrix of A with column indices in the set J
A⊤ transpose of the matrix A
A−⊤ inverse of the transpose of the square matrix A
A ◦B Hadamard product, that is (A ◦B)(i, j) = A(i, j)B(i, j)
e vector of all ones of appropriate dimension
ei i-th canonical vector of appropriate dimension
J matrix of all ones of appropriate dimension
Ei,j matrix whose (i, j)-th element is equal to one and zero elsewhere,

that is eie
⊤
j of appropriate dimension

x ≥ 0 the vector x is entry-wise nonnegative
A ≥ 0 the matrix A is entry-wise nonnegative
∆r probability simplex, {x ∈ Rr | x ≥ 0, e⊤x = 1}
∆r×n set of matrices whose columns lies in ∆r

Sn set of symmetric n× n matrices, {X ∈ Rn×n | X = X⊤}
Sn+ set of symmetric positive semidefinite matrices, {X ∈ Sn | X ⪰ 0}
Sn++ set of symmetric positive definite matrices, {X ∈ Sn | X ≻ 0}
cone(A) conical hull of the columns of A, {y | y = Az, z ≥ 0}
conv(A) convex hull of the columns of matrix A ∈ Rm×n,

{y | y = Az, z ∈ ∆n}
ext(X ) set of extreme points of the set X
bd(X ) boundary of the set X
X ∗,g polar of the set X ⊂ Rr with respect to g, that is,

{x ∈ Rr | ⟨x, y − g⟩ ≥ 0, for all y ∈ X}
κ(A) condition number of the matrix A
|S| Cardinality of the set S, that is the number of elements in S
∥x∥0 ℓ0-“norm” of vector x, |{i | xi ̸= 0}|
∥x∥1 ℓ1-norm of vector x ∈ Rr,

∑r
i=1 |xi|

∥x∥2 ℓ2-norm of vector x ∈ Rr,
√∑r

i=1 |xi|2
∥A∥F Frobenius norm of matrix A ∈ Rm×r,

√∑m
i=1

∑r
j=1 A(i, j)

2

∥A∥ Spectral norm of matrix A, that is, its largest singular value
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Chapter 1

Introduction
ZEAL & ARDOR - Sacrilegium III

Motivations
The objective of machine learning is mainly to predict, classify or analyze data. This
is usually done by using an algorithm that recognizes common and useful features
in the data, according to a model. Compared to data-driven approaches, model-
based approaches require more understanding of the data, but less amount of data
during the learning. Particularly, linear models are interesting for their simplicity
and interpretability. Consider some data stored in a matrix X ∈ Rm×n where m
represents the dimension of a sample and n the number the samples. A general linear
model assumes that X can be written as X = WH + N , where W ∈ Rm×r can be
interpreted as a basis matrix with each column of W representing a feature, H ∈ Rr×n

can be interpreted as a decomposition of X into the W basis, and N ∈ Rm×n is noise
and model misfit. Take the j-th sample X(:, j), it can be approximated by

X(:, j) ≈WH(:, j) =

r∑

k=1

H(k, j)W (:, k).

In other words, each sample can be approximated by a weighted sum of features. The
features are stored in W and the weights are stored in H. This simple, yet powerful,
data representation technique is applied in many domains, e.g., facial feature extrac-
tion [62], document clustering [35], blind source separation [72, 83], data fusion [84],
demosaicing [1], community detection [88], gene expression analysis [110], in situ cal-
ibration of sensors [104], and recommender systems [87]. When r < rank(X), we
refer to such models as low-rank matrix approximations. Low-rank matrix approxi-
mations/factorizations are linear dimension reduction techniques, that have recently
emerged as very efficient models for unsupervised learning; see, e.g., [94, 95] and
the references therein. The most notable example is principal component analysis
(PCA), which can be solved efficiently via the Singular Value Decomposition (SVD).
In the last 20 years, many new more sophisticated models have been proposed, such
as sparse PCA that requires one of the factors to be sparse to improve interpretabil-
ity [25], robust PCA to handle gross corruption and outliers [17, 18], and low-rank

21
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matrix completion, also known as PCA with missing data, to handle missing entries
in the input matrix [57]. The low-rank assumption supposes that there is redundancy
in the data that can be explained linearly. Typically, the factors W and H are learned
by minimizing an objective function. Different objective functions will promote differ-
ent behaviors. The main objective function used in this thesis is the Frobenius norm,
that is, ∥X −WH∥2F =

∑
(i,j)(X(i, j) −W (i, :)H(:, j))2. For the Frobenius norm,

the best rank r matrix approximation is given by the truncated SVD. This result
is also known as the Eckart-Young theorem [29]. Depending on the application, the
data and the goal at hand (e.g., clustering, denoising, feature extraction), additional
structures/constraints on the factors W and/or H, such as sparsity, nonnegativity
and statistical independence to name a few, are more or less relevant in order to favor
specific structures. We then talk of a Constrained Low-Rank Matrix Factorization
(CLRMF). In this thesis, we particularly focus on CLRMFs that encourage unique-
ness, that is, a unique retrieval of W and H. Uniqueness is also called identifiability.
More details on identifiability are given in Section 2.3. Identifiability is useful in ap-
plications where the true underlying features and decomposition are desired, like in
hyperspectral unmixing for instance where we aim at recovering the true materials
present in the image along with their abundances in each pixel; see below for more
details.

Applications

CLRMF is a very generic model and can be used in many applications. It can be
used for, but it is not limited to, data imputation, noise reduction, data visualization
and cluster analysis. Here, we mention two applications that will be often used in
this thesis.

• Hyperspectral Unmixing (HU) Light can be made of several electromag-
netic waves that include radio waves, microwaves, infrared, visible light, ultravi-
olet, X-rays, and gamma rays. When light hits a material, this material absorbs
an amount of the light, depending on the wavelengths of the electromagnetic
spectrum. Some of the light is also reflected. When a white light hits a ba-
nana, we see the banana as being yellow because it absorbed the colors in the
visible light spectrum except at the wavelengths corresponding to yellow. Even
if we cannot see it, this phenomenon also happens outside of the visible light
spectrum, providing very rich information. Each material has a unique spectral
signature, which refers to how much light the material reflects at different wave-
lengths of the electromagnetic spectrum. In other words, a spectral signature
is a pattern that shows how the reflectance of a material changes across various
wavelengths, making it possible to identify different materials based on their
reflectance behavior. A hyperspectral data cube of size a× b×m contains the
measured spectral reflectance in m bandwidths of a a × b sized pixelated area.
The spatial information can be vectorized by horizontally concatenating each
pixel. Thus, a matrix X ∈ Rm×n

+ is obtained where n = a× b is the number of
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pixels. Due to physical constraints, satellites measuring the reflectance with a
high spectral resolution have to compromise with the spatial resolution. Hence,
a pixel can correspond to an area of several square meters. It is then possible
that several materials are present in one pixel. HU consists in identifying the
spectral signature of the materials present in the area, also called endmembers,
as well as their abundance in each pixel. If we assume that the mixing process
in a pixel is linear, HU can be performed with CLRMF. Properly doing so, the
k-th column of W should contain the spectral signature of the k-th endmember,
and H(k, j) should contain the abundance of the k-th endmember in the j-th
pixel. As previously said, identifiability is then a key feature in HU. A practi-
tioner wants to retrieve the true materials present in the area, as well as their
true abundances. HU is discussed in Chapters 5 to 7.

• Matrix Completion for Recommender Systems In some applications, ei-
ther due to data corruption or simply due to missing measurements, it is possible
that the data matrix X is incomplete. This is the case in recommender systems
for instance. Consider a movie-user rating data matrix X ∈ Rm×n

+ , where the
entry X(i, j) is the rating that the j-th user gave to the i-th movie. Obviously,
X has some missing entries because all the users have not watched and rated all
the movies. Let us assume that we have a way to estimate the missing values. It
is then possible to recommend a movie to a user if, according to the estimation,
this user should give a good rating to this movie. One of the most standard
way to impute the missing entries is to assume that the hypothetical full matrix
can be approximated by a low-rank matrix. Let us assume that we fix1 the
rank of the estimation to r. Call M ∈ {0, 1}m×n the binary matrix2 of observed
entries, where M(i, j) = 1 if X(i, j) is known, and M(i, j) = 0 otherwise. Let
us minimize the fitting error

∥M ◦ (X −WH)∥2F =
∑

(i,j),M(i,j)=1

(X(i, j)−W (i, :)H(:, j))2

with respect to W ∈ Rm×r and H ∈ Rr×n, where ◦ is the Hadamard product.
If X(i, j) is unknown, it can be estimated just by computing W (i, :)H(:, j).
Typically, other constraints are imposed on the factors W and H in order to
avoid over-fitting and improve the imputation. Matrix completion is discussed
in Chapters 3 and 6.

1Some CLRMFs for missing data completion do not need to fix the rank [14]. We just make this
assumption here for the sake of simplicity.

2This is a particular case of M ∈ [0, 1]m×n being a weight matrix, where the weight M(i, j)
between 0 and 1 indicates how much the (i, j)-th entry can be trusted. M(i, j) = 0 means that you
do not trust the value X(i, j) and M(i, j) = 1 means that you trust the value X(i, j).
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Thesis outline and related publications
The aim of this thesis is fourfold:

1. create new interpretable and identifiable matrix factorization models,

2. improve existing matrix factorization models for some specific applications,

3. develop fast algorithms for these models, and

4. apply these models and algorithms on data sets and compare to the state of the
art.

This thesis is structured as follows:

Chapter 2. Preliminaries

In this chapter, we introduce some background on Nonnegative Matrix Factor-
ization, Simplex-Structured Matrix Factorization and identifiability, often needed
through the thesis.

Chapter 3. Bounded Simplex-Structured Matrix Factorization

In this chapter, we propose a new low-rank matrix factorization model dubbed
bounded simplex-structured matrix factorization (BSSMF). Given an input matrix
X and a factorization rank r, BSSMF looks for a matrix W with r columns and a
matrix H with r rows such that X ≈WH where the entries in each column of W are
bounded, that is, they belong to given intervals, and the columns of H belong to the
probability simplex, that is, H is column stochastic. BSSMF generalizes nonnegative
matrix factorization (NMF), and simplex-structured matrix factorization (SSMF).
BSSMF is particularly well suited when the entries of the input matrix X belong to
a given interval; for example when the rows of X represent images, or X is a rating
matrix such as in the Netflix and MovieLens datasets where the entries of X belong
to the interval [1, 5]. The simplex-structured matrix H not only leads to an easily
understandable decomposition providing a soft clustering of the columns of X, but
implies that the entries of each column of WH belong to the same intervals as the
columns of W . In this chapter, we first propose a fast algorithm for BSSMF, even
in the presence of missing data in X. Then we provide identifiability conditions for
BSSMF, that is, we provide conditions under which BSSMF admits a unique decom-
position, up to trivial ambiguities. Finally, we illustrate the effectiveness of BSSMF
on two applications: extraction of features in a set of images, and the matrix comple-
tion problem for recommender systems.
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The content of this chapter is mainly extracted from
[101] Vu Thanh, O., Gillis, N. & Lecron, F. Bounded Simplex-Structured Matrix Fac-
torization in IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP) (2022),
9062–9066
[102] Vu Thanh, O., Gillis, N. & Lecron, F. Bounded Simplex-Structured Matrix
Factorization: Algorithms, Identifiability and Applications. IEEE Transactions on
Signal Processing 71, 2434–2447 (2023).

Chapter 4. Identifiability of Polytopic Matrix Factorization

Polytopic matrix factorization (PMF) decomposes a given matrix as the product
of two factors where the rows of the first factor belong to a given convex polytope and
the columns of the second factor belong to another given convex polytope. In this
chapter we show that if the polytopes have certain invariant properties, and that if the
rows of the first factor and the columns of the second factor are sufficiently scattered
within their corresponding polytope, then this PMF is identifiable, that is, the factors
are unique up to a signed permutation. The PMF framework is quite general, as it
recovers other known structured matrix factorization models, and is highly customiz-
able depending on the application. Hence, our result provides sufficient conditions
that guarantee the identifiability of a large class of structured matrix factorization
models.

The content of this chapter is mainly extracted from
[99] Vu Thanh, O. & Gillis, N. Identifiability of Polytopic Matrix Factorization in
2023 31st European Signal Processing Conference (EUSIPCO) (2023), 1290–1294.

Chapter 5. Randomized Successive Projection Algorithm for Separable
NMF

The successive projection algorithm (SPA) is a widely used algorithm for nonneg-
ative matrix factorization (NMF) under the separability assumption. Separability as-
sumes that the cone of W should be equal to the cone of the data X. In hyperspectral
unmixing, that is, the extraction of materials in a hyperspectral image, separability is
equivalent to the pure-pixel assumption and states that for each material present in
the image there exists at least one pixel composed of only this material. SPA is fast
and provably robust to noise, but is not robust to outliers. Also, it is deterministic,
so for a given setting it always produces the same solution. Yet, it has been shown
empirically that the non-deterministic algorithm vertex component analysis (VCA),
when run sufficiently many times, often produces at least one solution that is better
than the solution of SPA. In this chapter, we combine the best of both worlds and
introduce a randomized version of SPA dubbed RandSPA, that produces potentially
different results at each run. It can be run several times to keep the best solution,
and it is still provably robust to noise. Experiments on the unmixing of hyperspectral
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images show that the best solution among several runs of RandSPA is generally better
that the solution of vanilla SPA.

The content of this chapter is mainly extracted from
[103] Vu Thanh, O., Nadisic, N. & Gillis, N. Randomized Successive Projection Algo-
rithm in GRETSI’22, XXVIIIème Colloque Francophone de Traitement du Signal et
des Images (2022).

Chapter 6. Minimum-Volume Nonnegative Matrix Factorization

Nonnegative matrix factorization with the minimum volume criterion (MinVol
NMF) guarantees that, under some mild and realistic conditions, the factorization
has an essentially unique solution. This result has been successfully leveraged in
many applications, including topic modeling, hyperspectral image unmixing, and au-
dio source separation. In this chapter, we propose a fast algorithm to solve MinVol
NMF which is based on a recently introduced block majorization-minimization frame-
work with extrapolation steps. We illustrate the effectiveness of our new algorithm
compared to the state of the art on several real hyperspectral images and document
datasets. We also focus on the use of the minimum volume criterion on the task
of nonnegative data imputation, which, up to our knowledge, has never been ex-
plored before. The particular choice of the MinVol regularization is justified by its
interesting identifiability property and by its link with the nuclear norm. We show
experimentally that MinVol NMF is a relevant model for nonnegative data recovery,
especially when the recovery of a unique embedding is desired. Additionally, we intro-
duce a new version of MinVol NMF that outperforms vanilla MinVol for data recovery.

The content of this chapter is mainly extracted from
[98] Vu Thanh, O., Ang, A., Gillis, N. & Hien, L. T. K. Inertial majorization-
minimization algorithm for minimum-volume NMF in European Signal Processing
Conference (EUSIPCO) (2021), 1065–1069
[100] Vu Thanh, O. & Gillis, N. Minimum-Volume Nonnegative Matrix Completion
in European Signal Processing Conference (EUSIPCO) (2024).

Chapter 7. Maximum-Volume Nonnegative Matrix Factorization

Nonnegative matrix factorization with a maximum volume criterion (MaxVol
NMF) is an identifiable regularized low-rank model that has not been studied as much
as its counterpart minimum-volume NMF (MinVol NMF). Given a matrix dataset X,
MaxVol NMF consists in finding two nonnegative low-rank factors, W and H, such
that their product approximates X while the volume spanned by the origin and the
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rows of H is as large as possible. This MaxVol criterion, combined with nonnegativ-
ity, will incite H to be sparser. In MinVol NMF, the volume criterion is on W and
should be minimized. In the exact case, that is, X = WH, we show that MinVol
NMF is equivalent to MaxVol NMF. Moreover, we show that MaxVol NMF behaves
rather differently than MinVol NMF in the presence of noise, especially when the
penalty on the volume criterion is increased. We also show how MaxVol NMF creates
a continuum between NMF and orthogonal NMF with even clusters. We propose
several algorithms to solve MaxVol NMF, which we apply on real datasets. Finally,
we introduce the “normalized” variant of MaxVol NMF which exhibits better results
than MinVol NMF and MaxVol NMF on Hyperspectral Unmixing (HU).

Open-source codes
All the algorithms developed in this thesis are available online along with the data and
(most of) the test scripts necessary to reproduce our experiments: https://gitlab.
com/vuthanho

https://gitlab.com/vuthanho
https://gitlab.com/vuthanho
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Chapter 2

Preliminaries
Radiohead - Karma Police

2.1 Nonnegative Matrix Factorization (NMF)

We say that a matrix is nonnegative if all its elements are larger or equal to zero. In
the remaining of this thesis, X ≥ 0 means that X(i, j) ≥ 0 for all (i, j). Nonnegative
matrix factorization (NMF), popularized by Lee and Seung [62], is a linear dimension-
ality reduction technique that has become a standard tool to extract latent structures
in nonnegative data. Given an input matrix X ∈ Rm×n and a factorization rank
r < min(m,n), NMF consists in finding two factors W ∈ Rm×r

+ and H ∈ Rr×n
+ such

that X ≈ WH. Columns of X are called data points, and if H is column-stochastic
then the columns of W can be seen as the vertices of a convex hull containing the
data points; see Section 2.2. Applications of NMF include feature extraction in im-
ages, topic modeling, audio source separation, chemometrics, or blind hyperspectral
unmixing (HU), see for example [20, 33, 34, 41] and the references therein.

Let us define the Exact NMF and NMF problems.

Definition 2.1 (Exact NMF) Given a nonnegative matrix X ∈ Rm×n
+ , an exact

NMF of size r consists in finding two matrices W ∈ Rm×r
+ and H ∈ Rr×n

+ such that
X = WH. The smallest r such that you can find an exact NMF of X is called the
nonnegative rank of X and is noted rank+(X).

Definition 2.2 (NMF) Given a matrix X ∈ Rm×n, finding its NMF of size r con-
sists in solving

minimize
W,H

∥X −WH∥2F

subject to W ∈ Rm×r
+ ,

H ∈ Rr×n
+ .

(2.1)

Note that we fixed our definition with the Frobenius norm because it is the only cost
function used as a reconstruction error in this thesis. Nonetheless, other cost functions
could be used, such as the beta-divergences [31].
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When a data matrix is nonnegative, it makes sense to use NMF in order to de-
compose it with features that are also nonnegative, and in an additive way. The main
advantage of NMF is that the nonnegativity constraints on the factors W and H lead
to an easily interpretable part-based decomposition [62].

Geometric interpretation of NMF In the exact case, an NMF of size r is equiv-
alent to finding a cone with r rays in the nonnegative orthant that contains all the
data points X(:, j). The columns of the matrix W of the corresponding NMF are the
rays that generated this polyhedral cone. Consider an NMF X = WH. For every
j, X(:, j) = WH(:, j). Since H(:, j) ≥ 0 for all j, we have cone(X) ⊆ cone(W ) by
definition of a cone1; see Figure 2.1 for a 3D example.

Columns of X
cone(X)

Columns of W
cone(W )

Figure 2.1: Geometric interpretation of Exact NMF with r = 3

2.2 Simplex-structured matrix factorization (SSMF)

A key set that will be used through the thesis is the probability simplex, that will
allow us to define the SSMF problem.

Definition 2.3 (Probability simplex) We denote ∆r the probability simplex, that
is, the set

{x ∈ Rr | x ≥ 0, e⊤x = 1},
where e is the vector of all ones of appropriate dimension.

We then also denote ∆r×n the set of matrices of size r×n such that all their columns
lie in ∆r, that is,

{X ∈ Rr×n | X(:, j) ∈ ∆r for all j}.

Definition 2.4 (Exact SSMF) Given a matrix X ∈ Rm×n, an exact SSMF of size
r consists in finding two matrices W ∈ Rm×r and H ∈ ∆r×n such that X = WH.

1Equality is equivalent under the so-called separability assumption; see Chapter 5
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Definition 2.5 (SSMF) Given a matrix X ∈ Rm×n, finding its SSMF of size r
consists in solving

minimize
W,H

∥X −WH∥2F

subject to W ∈ Rm×r,

H ∈ ∆r×n.

(2.2)

With SSMF, each data point X(:, j) has to be explained through a convex combination
of some features. Due to that, SSMF is quite useful for providing a soft clustering
decomposition of the data. In recommender systems for instance, SSMF could provide
this kind of interpretation: “This user is behaving 80% like this typical user and 20%
like this other typical user”.

Geometric interpretation of SSMF In the exact case, an SSMF of size r is
equivalent to finding a convex hull with r vertices that contains all the data points
X(:, j). The columns of the matrix W of the corresponding SSMF are then the vertices
of this convex hull. Consider an SSMF X = WH. For every j, X(:, j) = WH(:, j).
Since H(:, j) ∈ ∆r for all j, we have conv(X) ⊆ conv(W ) by definition of conv(W );
see Figure 2.2 for a 3D example.

Columns of X
conv(X)

Columns of W
conv(W )

Figure 2.2: Geometric interpretation of Exact SSMF with r = 4 and n = 6
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2.3 Identifiability
Let us first define a factorization model.

Definition 2.6 (Factorization model) Given a matrix X ∈ Rm×n, and an integer
r ≤ min(m,n), a factorization model is an optimization model of the form

min
W∈Rm×r,H∈Rr×n

g(W,H)

such that X = WH,

W ∈ ΩW and H ∈ ΩH ,

(2.3)

where g(W,H) is some criterion, and ΩW and ΩH are the feasible sets for W and H,
respectively.

Let us define the identifiability of a factorization model, and essential uniqueness
of a pair (W,H).

Definition 2.7 (Identifiability / Essential uniqueness) Let X ∈ Rm×n, and
r ≤ min(m,n) be an integer. Let (W,H) be a solution to a given factorization
model (2.3). The pair (W,H) is essentially unique for the factorization model (2.3)
of matrix X if and only if any other pair (W ′, H ′) ∈ Rm×r × Rr×n that solves the
factorization model (2.3) satisfies, for all k,

W ′(:, k) = αkW (:, π(k))

and
H ′(k, :) = α−1

k H(π(k), :),

where π is a permutation of {1, 2, . . . , r}, and αk ̸= 0 for all k. In other terms,
(W ′, H ′) can only be obtained as a permutation and scaling of (W,H). In that case,
the factorization model is said to be identifiable for the matrix X.

A key question in theory and practice is to determine conditions on X, g, ΩW and
ΩH that lead to identifiable factorization models; see, e.g., [34, 58] for discussions.
This will be a major topic of this thesis.

2.3.1 Identifiability of NMF
NMF is not essentially unique in general. However, as opposed to SSMF (see Sec-
tion 2.3.2), NMF decompositions can be identifiable without the use of additional
requirements. The first identifiability result was proposed in [27]. Their conditions,
based on separability, are quite strong. In the context of nonnegative source separa-
tion, [78] proposed some necessary conditions for the uniqueness of the solution. One
of the most relaxed sufficient condition for identifiability is based on the Sufficiently
scattered condition (SSC).

Theorem 2.1 [54, Theorem 4] If W⊤ ∈ Rr×m and H ∈ Rr×n are sufficiently
scattered, then the Exact NMF (W,H) of X = WH of size r = rank(X) is essentially
unique.



Chapter 2. Preliminaries 33

The SSC is defined as follows.

Definition 2.8 (Sufficiently scattered condition) The matrix H ∈ Rr×n
+ is suf-

ficiently scattered if the following two conditions are satisfied:

[SSC1] C = {x ∈ Rr
+ | e⊤x ≥

√
r − 1∥x∥2} ⊆ cone(H).

[SSC2] There does not exist any orthogonal matrix Q such that cone(H) ⊆ cone(Q),
except for permutation matrices.

Lemma 2.1 The dual cone of C is given by C∗ =
{
y ∈ Rr, e⊤y ≥ ∥y∥2

}
.

The proof for this lemma is provided in [42, Section 4.2.3.2].

SSC1 requires the columns of H to contain the cone C, which is tangent to every
facet of the nonnegative orthant; see Figure 2.3. Hence, satisfying SSC1 requires some
degree of sparsity as H needs to contain at least r−1 zeros per row [41, Th. 4.28]. SSC2
is a mild regularity condition which is typically satisfied when SSC1 is satisfied. For
more discussions on the SSC, we refer the interested reader to [34] and [41, Chapter
4.2.3], and the references therein.

In practice, it is not likely for both W⊤ and H to satisfy the SSC. Typically, H
will satisfy the SSC, as it is typically sparse. However, in many applications, W⊤

will not satisfy the SSC; in particular in applications where W is not sparse, e.g., in
hyperspectral unmixing, recommender systems, or imaging. This is why regularized
NMF models have been introduced, including sparse and volume regularized NMF.
We refer the interested reader to Chapter 6, Chapter 7 and [41, Chapter 4] for more
details.

2.3.2 Identifiability of SSMF
Without further requirements, SSMF is never identifiable; which follows from a result
for semi-NMF which is a factorization model that requires only one factor, H, to be
nonnegative [44]. Let X = WH be an SSMF of X. We can obtain other SSMF of X
using the following transformation: for any α ≥ 0, let

W (α) := W
(
(1 + α)I − α

r
J
)
,

and

H(α) :=

(
1

1 + α
H +

α

(1 + α)r
J

)

=

(
1

1 + α
I +

α

(1 + α)r
J

)
H,

where I is the identity matrix of appropriate dimension, J is the matrix of all ones
of appropriate dimension. The second equality follows from the fact that e⊤H = e⊤.
The matrix H(α) is column stochastic since H and J

r are. One can check that
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(a) cone C

C∆3

e1

e2

e3

(b) SSC

bd(∆3)
Columns of H
scaled on ∆3

cone(H) ∩∆3

C ∩∆3

(c) SSC1 (d) SSC1 SSC2

Figure 2.3: Illustration of the SSC in three dimensions. On (a): the sets ∆3 and C,
they intersect at (0,0.5,0.5), (0.5,0,0.5), and (0.5,0.5,0). On (b), (c) and (d): exam-
ples of a matrix H ∈ R3×n respectively satisfying the SSC, not satisfying SSC1 and
satisfying SSC1 but not SSC2.
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(W (α), H(α)) is not a permutation and scaling of (W,H) for α > 0, while WH =
W (α)H(α) since2

A(α) :=
(
(1 + α)I − α

r
J
)−1

=
1

1 + α
I +

α

(1 + α)r
J.

Geometrically, to obtain W (α), the columns of W are moved towards the exterior of
conv(W ) and hence the convex hull of the column of W (α) contains the convex hull
of the columns of W and hence contains conv(X). This follows from the fact that
W = W (α)A(α), where A is column stochastic.

To obtain identifiability of SSMF, one needs either to impose additional constraints
on W and/or H such as sparsity [2], or look for a solution minimizing a certain
function g. In particular, MinVol SSMF, that is the solution (W,H) that minimizes
the volume of the convex hull of W and the origin within its column space

minimize
W∈Rm×r,H∈Rr×n

det(W⊤W )

subject to X = WH,

H ∈ ∆r×n,

(2.4)

is essentially unique given that H satisfies the so-called sufficiently scattered condition
(SSC). Note that the quantity det(W⊤W ) is only relative to the aforementioned
volume. The true volume is 1

r!

√
det(W⊤W ).

For SSMF, we have the following identifiability result.

Theorem 2.2 [37, 68] If H ∈ Rr×n is sufficiently scattered, then the Exact MinVol
SSMF (W,H), in the sense of (2.4), of X = WH of size r = rankX is essentially
unique.

Note that this result has been generalized to the case where the columns of H belong
to a given polytope instead of the probability simplex; see [91].

In practice, because of noise and model misfit, SSMF optimization models need to
balance the data fitting term which measures the discrepancy between X and WH,
and the volume regularization for conv(W ). Typically, a problem with objective
function of the form

∥X −WH∥2F + λ det(W⊤W ),

is solved. This requires the tuning of the parameter λ, which is a nontrivial process [3,
82, 113].

2This is an invertible M-matrix, with positive diagonal elements and negative off-diagonal ele-
ments, whose inverse is nonnegative [8].



36

2.4 Brief summary of the thesis content
In the following chapters, we will study various CLRMFs; they are organized as
follows:

• In Chapter 3, we introduce a new model, dubbed BSSMF, for Bounded Simplex-
Structured Matrix Factorization. BSSMF imposes that the columns of W belong
to a chosen hyperrectangle while the columns of H have to belong to the prob-
ability simplex. The resulting factorization WH naturally belongs to the same
chosen hyperrectangle. This behavior is particularly meaningful for naturally
bounded data. BSSMF is also identifiable under milder conditions than NMF.

• In Chapter 4, we introduce a new model, dubbed PMF, for Polytopic Matrix
Factorization. PMF imposes that the rows of W belong to a chosen polytope
and the columns of H belong to another chosen polytope. PMF is identifiable
with the same core idea than Theorem 2.1, that is, the rows of W and the
columns of H should be “sufficiently scattered” within their respective feasible
set. PMF is a very generic model, meaning that we provide identifiability for a
wild class of matrix factorization models.

• In Chapter 5, we introduce RandSPA, a greedy algorithm to solve NMF under
the separability assumption. RandSPA creates a continuum between SPA and
VCA. Thus, it combines the robustness of SPA and the randomness of VCA,
allowing to outperform them when taking the best run among several.

• In Chapter 6, we study MinVol NMF, a model similar to MinVol SSMF (2.4).
Thus, it inherits from its identifiability. As a reminder, the MinVol criterion
penalizes the volume of the convex hull generated by the columns of W and the
origin. Compared to MinVol SSMF, W has to be nonnegative. Also, there are
variants of MinVol NMF where the simplex-structure can be either on rows of H
or the columns of W . We develop a fast algorithm for MinVol NMF based on an
inertial block majorization-minimization framework for non-smooth non-convex
optimization, that was also used for BSSMF. Then, we show that the MinVol
criterion shows promising results for matrix completion.

• In Chapter 7, we introduce a new model, dubbed MaxVol NMF. The core idea
revolves around volume penalization, like with MinVol NMF. The difference is
that the volume of H is maximized, instead of the volume of W being minimized.
In the exact case, MinVol NMF and MaxVol NMF are equivalent. Thus, MaxVol
NMF is as identifiable as MinVol NMF. However, in the inexact case, MaxVol
NMF offers more control on the sparsity of the decomposition factor H. This
behavior is interesting in the context of HU. In fact, MaxVol NMF shows better
results than MinVol NMF on real hyperspectral datasets.
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Bounded Simplex-Structured
Matrix Factorization

HOME - Resonance

Recently, simplex-structured matrix factorization (SSMF), discussed in Section 2.2,
was introduced as a generalization of NMF [108]; see also [2] and the references therein.
SSMF does not impose any constraint on W , while it requires H to be column stochas-
tic, that is, H(:, j) ∈ ∆r for all j. As a reminder, ∆r = {x ∈ Rr | x ≥ 0, e⊤x = 1}
is the probability simplex and e is the vector of all ones of appropriate dimension.
SSMF is closely related to various machine learning problems, such as latent Dirichlet
allocation, clustering, and the mixed membership stochastic block model; see [6] and
the references therein. Let us recall why SSMF is a generalizarion of NMF by con-
sidering the exact NMF model, X = WH. Let us normalize the input matrix such
that the entries in each column sum to one (w.l.o.g. we assume X, and W , do not
have a zero column), that is, such that X⊤e = e, and let us impose w.l.o.g. that the
entries in each column of W also sum to one (by the scaling degree of freedom in the
factorization WH), that is, W⊤e = e. Then, we have

X⊤e = e = (WH)⊤e = H⊤W⊤e = H⊤e, (3.1)

so that H has to be column stochastic, since H ≥ 0 and H⊤e = e is equivalent to
H(:, j) ∈ ∆r for all j.

In this chapter, we introduce bounded simplex-structured matrix factorization
(BSSMF). BSSMF imposes the columns of W to belong to a hyperrectangle, namely
W (i, j) ∈ [ai, bi] for all i, j for some parameters ai ≤ bi for all i. For simplicity, given
a ≤ b ∈ Rm, we denote the hyperrectangle

[a, b] = {y ∈ Rm | ai ≤ yi ≤ bi for all i},

and refer to it as an interval. The hyperrectangle constraint on W is denoted as
W (:, j) ∈ [a, b] for all j. Let us formally define BSSMF.

Definition 3.1 (BSSMF) Let X ∈ Rm×n, let r ≤ min(m,n) be an integer, and let
a, b ∈ Rm with a ≤ b. The pair (W,H) ∈ Rm×r × Rr×n is a BSSMF of X of size r
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for the interval [a, b] if

X = WH, W (:, k) ∈ [a, b] for all k, H(:, j) ∈ ∆r for all j.

Since the columns of H define convex combinations, the convex hull of the columns
of X = WH is contained in the convex hull of the columns of W , which is itself
contained in the hyperrectangle [a, b]. This implies that the hyperrectangle [a, b]
must contain the columns of the data matrix, X = WH. BSSMF reduces to SSMF
when ai = −∞ and bi = +∞ for all i. When X ≥ 0, BSSMF reduces to NMF when
ai = 0 and bi = +∞ for all i, after a proper normalization of X; see the discussion
around Equation (3.1).

Outline and contribution of the chapter The chapter is organized as follows.
In Section 3.1, we explain the motivation of introducing BSSMF. In Section 3.2, we
propose an efficient algorithm for BSSMF. In Section 3.3, we provide an identifiability
result for BSSMF, which follows from an identifiability result for NMF. In Section 3.4,
we illustrate the effectiveness of BSSMF on two applications:

• Image feature extraction: the entries of X are pixel intensities. For example,
for a gray level image, the entries of X belong to the interval [0, 255].

• Recommender systems: the entries of X are ratings of users for some items
(e.g., movies). These ratings belong to an interval, e.g., [1,5] for the Netflix and
MovieLens datasets.

3.1 Motivation of BSSMF
The motivation to introduce BSSMF is mostly fourfold; this is described in the next
four paragraphs.

Bounded low-rank approximation When the data naturally belong to intervals,
imposing the approximation to belong to the same interval allows to provide better
approximations, taking into account this prior information. Imposing that the entries
in W belong to some interval and that H is column stochastic resolves this issue.
BSSMF implies that the columns of the approximation WH belong to the same
interval as the columns of W . In fact, for all j,

X(:, j) ≈ WH(:, j) ∈ [a, b],

since W (:, k) ∈ [a, b]m for all k, and the entries of H(:, j) are nonnegative and sum to
one.

Another closely related model was proposed in [70] where the entries of the factors
W and H are required to belong to bounded intervals. The authors showed that their
model is suitable for clustering. Nonetheless, it is not clear how to choose the lower
and upper bounds on the entries of W and H to obtain tight lower and upper bounds
for their product WH. With BSSMF the choice for the lower and upper bounds
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is easier, e.g., choosing ai and bi to be the smallest and largest entry in X(i, :),
respectively, that is, bounding W in the same way the data matrix is; see Section 3.3
for more details.

Interpretability BSSMF allows us to easily interpret both factors: the columns of
W can be interpreted in the same way as the columns of X (e.g., as movie ratings, or
pixel intensities), while the columns of H provide a soft clustering of the columns of
X as they are column stochastic. BSSMF can be interpreted geometrically similarly
as SSMF and NMF: the convex hull of the columns of W , conv(W ), must contain
conv(X), since X(:, j) = WH(:, j) for all j where H is column stochastic, while it is
contained in the hyperrectangle [a, b]:

conv(X) ⊆ conv(W ) ⊆ [a, b].

Imposing bounds on the approximation, via the element-wise constraints a ≤
WH ≤ b for some a, b ∈ R, was proposed in [55] and applied successfully to recom-
mender systems. However, this model does not allow to interpret the basis factor,
W , in the same way as the data. Some elements in W will probably be out of the
rating range because W is not directly constrained. Hence, the basis elements in W
can only be interpreted as “eigen users”, while with BSSMF, the basis elements can be
interpreted as virtual meaningful users. It is also difficult to interpret the factor H as
it could contain negative contributions. In fact, only imposing a ≤WH ≤ b typically
leads to dense factors W and H (that is, factors that do not contain many zeros, as
opposed to sparse factors), while in most applications interpretability usually comes
with a certain sparsity degree in at least one of the factors.

A closely related model that tackles blind source separation is bounded component
analysis (BCA) proposed in [24, 30], where the sources are assumed to belong to
compact sets (hyperrectangle being a special case), while no constraints is imposed
on the mixing matrix. Again, without any constraints on the mixing matrix, BCA
will generate dense factors with negative linear combinations which are difficult to
interpret. Let us note that their motivation is different from ours, as their objective is
to extract mixed sources, while ours is to extract interpretable features and decompose
data through them. In [75], the authors also proposed a blind source separation
algorithm for bounded sources based on geometrical concepts. The mixtures are
assumed to belong to a parallelogram. The proposed separation technique is relies on
mapping this parallelogram to a rectangle. Again, their objective is to extract mixed
sources. Nonetheless, working with a domain different from a hyperrectangle could
be of interest for future work.

Identifiability Identifiability is key in practice as it allows to recover the ground
truth that generated the data; see the discussion in Section 2.3, [34, 58] and the ref-
erences therein. A drawback of SSMF is that it is never identifiable, see Section 2.3.2
for further details. On the counterpart NMF can be identifiable, which is discussed
in Section 2.3.1. Nonetheless, the conditions are not mild. For NMF to be iden-
tifiable, it is necessary that the supports of the columns of W (that is, the set of
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non-zero entries) are not contained in one another (this is called a Sperner family),
and similarly for the supports of the rows of H; see, e.g., [59, 78]. This requires the
presence of zeros in each column of W and row of H, which can be a strong condition
in some applications. For example, in hyperspectral unmixing, W is typically not
sparse because it recovers spectral signatures of constitutive materials which are typ-
ically positive. Although the conditions for NMF (and SSMF) to be identifiable can
be weakened using additional constraints and regularization terms, it then requires
hyperparameter tuning procedures. In [91], they propose a model where the columns
of H belong to a polytope. Using a maximum volume criterion on the convex hull of
H, their model is identifiable under the condition that the convex hull of H contains
the ellipsoid of maximum volume inscribed in the constraining polytope. The use of
the maximum volume criterion also requires hyperparameter tuning. In [24, 30], the
sources are identifiable by optimizing some geometric criterion, respectively minimiz-
ing a perimeter, and maximizing the ratio between the volume of an ellipsoid and
the volume of a hyperrectangle. These identifiability conditions are not relevant to
our model. As we will see in Section 3.3, BSSMF is identifiable under relatively mild
conditions, while it does not require parameter tuning, as opposed to most regular-
ized structured matrix factorization models that are identifiable. Let us note that it
is also possible to formulate identifiable nonlinear matrix approximation models like
the bilinear model of [26], but this is out of the scope of this chapter.

Robustness to overfitting Another drawback of NMF and SSMF is that they
are rather sensitive to the choice of r. When r is chosen too large, these two models
are over-parameterized and will typically lead to overfitting. This is a well-known
behaviour that can be addressed with additional regularization terms that need to be
fine-tuned [86]. As we will see experimentally in Section 3.4.3 for matrix completion,
without any parameter tuning, BSSMF is much more robust to overfitting than NMF
and unconstrained matrix factorization. The reason is that the additional bound
constraints on W and sum-to-one constraint on H prevents columns of W and of
WH from going outside the feasible range, [a, b]. In turn, BSSMF will be less sensitive
to noise and an overestimation of r. For example, an outlier that falls outside the
feasible set [a, b] will not pose problems to BSSMF, while it may significantly impact
the NMF and SSMF solutions.

3.2 Inertial block-coordinate descent algorithm for
BSSMF

In this chapter, we consider the following BSSMF problem

min
W,H

g(W,H) :=
1

2
∥X −WH∥2F

such that W (:, k) ∈ [a, b] for all k,

H ≥ 0, and H⊤e = e,

(3.2)

that uses the squared Frobenius norm to measure the error of the approximation.
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3.2.1 Proposed algorithm
Most NMF algorithms rely on block coordinate descent methods, that is, they update
a subset of the variables at a time, such as the popular multiplicative updates of Lee
and Seung [61], the hierarchical alternating least squares algorithm [19, 40], and a
fast gradient based algorithm [48]; see, e.g., [41, Chapter 8] and the references therein
for more detail. More recently, an inerTial block majorIzation minimization frame-
work for non-smooth non-convex opTimizAtioN (TITAN) was introduced in [51] and
has been shown to be particularly powerful to solve matrix and tensor factorization
problems [50, 74, 98].

To solve (3.2), we therefore apply TITAN which updates one block W or H at a
time while fixing the value of the other block. In order to update W (resp. H), TITAN
chooses a block surrogate function for W (resp. H), embeds an inertial term to this
surrogate function and then minimizes the obtained inertial surrogate function. We
have ∇W g(W,H) = −(X −WH)H⊤ which is Lipschitz continuous in W with the
Lipschitz constant ∥HH⊤∥, where ∥.∥ is the spectral norm. Similarly, ∇Hg(W,H) =
−W⊤(X − WH) is Lipschitz continuous in H with constant ∥W⊤W∥. Hence, we
choose the Lipschitz gradient surrogate for both W and H and choose the Nesterov-
type acceleration as analyzed in [51, Section 4.2.1] and [51, Remark 4.1], see also [51,
Section 6.1] and [98] for similar applications.

Recall that applying BSSMF to recommender systems is one of our motivations,
meaning that our model should be able to handle missing entries in X. Let us consider
the more general model

min
W,H

g(W,H) :=
1

2
∥M ◦ (X −WH)∥2F

such that W (:, k) ∈ [a, b] for all k,

H ≥ 0, and H⊤e = e,

(3.3)

where ◦ corresponds to the Hadamard product, and M is a weight matrix
which can model missing entries using M(i, j) = 0 when X(i, j) is missing, and
M(i, j) = 1 otherwise. It can also be used in other contexts; see, e.g., [39,
43, 89]. TITAN can also be used to solve (3.3), where the gradients are equal
to ∇W g(W,H) = −(M ◦ (X −WH))H⊤ and ∇Hg(W,H) = −W⊤(M ◦ (X −WH)).
We acknowledge that the identifiability result that will be presented in Section 3.3
does not hold for the case where some data are missing, this is an interesting di-
rection of future research. Algorithm 3.1 describes TITAN for solving the general
problem (3.3), where [.]ab is the column-wise projection on [a, b] and [.]∆r is the col-
umn wise projection on the simplex ∆r. Let us clarify that our implementation of
TITAN, although looking similar to alternating fast projection gradient methods (AF-
PGMs), differs from them. Concretely, with TITAN, the inertial sequence is evolving
at every iteration and is not restarted when the algorithm alternates between updat-
ing W and updating H. Typically, AFPGMs would restart the inertial sequence when
the algorithm alternates between the blocks, because their goal is to solve alterna-
tively the sub-problems. TITAN considers the whole problem instead of considering
several sub-problems. Hence, TITAN tries to accelerate the global convergence of the
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sequences rather than trying to accelerate the convergence for the sub-problems. For
more details, see Section 6.3.1 where an implementation of TITAN for MinVol NMF
is shown to be faster than an alternating projection gradient method with Nesterov
extrapolation.

Due to our derived algorithm being a particular instance of TITAN with Lipschitz
gradient surrogates [51, Section 4.2], Algorithm 3.1 guarantees a subsequential con-
vergence, that is, every limit point of the generated sequence is a stationary point of
Problem (3.2). The Julia code for Algorithm 3.1 is available on gitlab1 (a MATLAB
code is also available on gitlab2 but it does not handle missing data). We omit the
implementation details here, but let us mention that when data are missing, our Ju-
lia implementation does not compute the Hadamard product with M explicitly but
rather takes advantage of the sparsity of the data by using multithreading to im-
prove the computational time. The projections [.]ab and [.]∆r are also computed using
multithreading.

Initialization A simple choice to initialize the factors, W and H, in Algorithm 3.1
is to randomly initialize them: for all i, each entry of W (i, :) is generated using the
uniform distribution in the interval [ai, bi], while H is generated using a uniform
distribution in [0, 1]r×n whose columns are then projected on the simplex ∆r.

Choice of Lipschitz constant When some data are missing, the Lipschitz constant
of the gradients relatively to W and H could be smaller than ∥HH⊤∥ and ∥W⊤W∥,
respectively. Relatively to H for instance, a smaller Lipschitz constant would be
maxj ∥W⊤ Diag(M(:, j))W∥. Indeed,

∥∇Hg(W,H1)−∇Hg(W,H2)∥F = ∥W⊤(M ◦ (W (H1 −H2)))∥F
∥W⊤(M ◦ (W (H1 −H2)))∥2F =

∑

j

∥W⊤(M(:, j) ◦ (W (H1(:, j)−H2(:, j))))∥2F

=
∑

j

∥W⊤ Diag(M(:, j))W (H1(:, j)−H2(:, j))∥2F

≤ max
j
∥W⊤ Diag(M(:, j))W∥2∥H1 −H2∥2F .

Obviously, maxj ∥W⊤ Diag(M(:, j))W∥ ≤ ∥W⊤W∥ due to M being binary. Equality
is achieved if there exists a j such that M(:, j) = e, that is, if at least one column is
fully observed. Consequently, ∥W⊤W∥ is clearly a Lipschitz constant of ∇Hg(W,H)
relatively to H, but maxj ∥W⊤ Diag(M(:, j))W∥ is a tighter one. By symmetry of the
problem, this also applies to ∇W g(W,H) relatively to W , where ∥HH⊤∥ is a Lips-
chitz constant, but maxi ∥H Diag(M(i, :))H⊤∥ is a tighter one. Yet, we choose to keep
∥HH⊤∥ and ∥W⊤W∥ even when some data are missing since those values are faster
to compute. This choice can be compensated by data centering; see Section 3.2.2.
Note that when M is a weight matrix, ∇W g(W,H) = −(M◦2 ◦ (X −WH))H⊤

1https://gitlab.com/vuthanho/bssmf.jl
2https://gitlab.com/vuthanho/bounded-simplex-structured-matrix-factorization

bssmf:https://gitlab.com/vuthanho/bssmf.jl
bssmf:https://gitlab.com/vuthanho/bounded-simplex-structured-matrix-factorization
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Algorithm 3.1: Proposed algorithm for BSSMF
input : Input data matrix X ∈ Rm×n, bounds a ≤ b ∈ Rm, initial factors

W ∈ Rm×r s.t. W (:, k) ∈ [a, b] for all k and simplex structured
H ∈ Rr×n

+ , weights M ∈ [0, 1]m×n

output: W and H
1 α1 = 1, α2 = 1, Wold = W,Hold = H, Lprev

W = LW = ∥HH⊤∥,
Lprev
H = LH = ∥W⊤W∥

2 repeat
3 while stopping criteria not satisfied do
4 α0 = α1, α1 = (1 +

√
1 + 4α2

0)/2

5 βW = min
[
(α0 − 1)/α1, 0.9999

√
Lprev
W /LW

]

6 W ←W + βW (W −Wold)
7 Wold ←W

8 W ←
[
W + (M◦(X−WH))H⊤

LW

]b
a

9 Lprev
W = LW

10 LH ← ∥W⊤W∥
11 while stopping criteria not satisfied do
12 α0 = α2, α2 = (1 +

√
1 + 4α2

0)/2

13 βH = min
[
(α0 − 1)/α2, 0.9999

√
Lprev
H /LH

]

14 H ← H + βH(H −Hold)
15 Hold ← H

16 H ←
[
H + W⊤(M◦(X−WH))

LH

]
∆r

17 Lprev
H ← LH

18 LW = ∥HH⊤∥
19 until some stopping criteria is satisfied
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and ∇Hg(W,H) = −W⊤(M◦2 ◦ (X −WH)), where M◦2 = M ◦ M . Similarly
to the case where M is binary, we then retrieve maxi ∥H Diag(M(i, :))2H⊤∥
and maxj ∥W⊤ Diag(M(:, j))2W∥ as tighter Lipschitz constants than ∥HH⊤∥ and
∥W⊤W∥.

3.2.2 Accelerating BSSMF algorithms via data centering
Not only the BSSMF model is invariant to translations of the input data (this is
explained in details in Section 3.3), but also the optimization, because of the simplex
constraints. In particular, for any µ ∈ Rm, minimizing

f(W,H) :=
1

2
∥X −WH∥2F (3.4)

or
fµ(W,H) :=

1

2
∥X − µe⊤ − (W − µe⊤)H∥2F (3.5)

is equivalent in BSSMF, since µe⊤H = µe⊤ as H is column stochastic. However,
outside the feasible set, f and fµ do not have the same topology. Computing the
gradients, we have ∇Hf(W,H) = W⊤(WH −X) which is Lipschitz continuous in H
with the Lipschitz constant ∥W⊤W∥, and ∇Hfµ(W,H) = W⊤

µ (WµH − Xµ) which
is Lipschitz continuous in H with the Lipschitz constant ∥W⊤

µ Wµ∥, where Wµ =

W − µe⊤ and Xµ = X − µe⊤. Particularly, for BSSMF, since W can be interpreted
in the same way as X, we expect meanrow(X) = 1

nXe ≈ meanrow(W ) ∈ Rm, where
meanrow(.) is the empirical mean of each row of the input. Let us in fact choose
µ = meanrow(X). From [52, Theorem 3], we have ∥X⊤

µ Xµ∥ ≤ ∥X⊤X∥. Consequently,
we expect the Lipschitz constant ∥W⊤

µ Wµ∥ to be smaller than ∥W⊤W∥. A smaller
Lipschitz constant means that, when updating H, the gradient steps are allowed to
be larger without losing any convergence guarantee. Hence, with the right translation
on our data X, the optimization problem on H is unchanged on the feasible set but
Algorithm 3.1 can be accelerated.

Let us illustrate this behavior on a small example with m = 2, n = 1, r = 2. We
choose

X =

(
0.4 0.3
0.7 0.2

)(
0.4
0.6

)
.

We fix
W =

(
0.4 0.3
0.7 0.2

)
,

and try to solve, with respect to H, Eq. (3.4) and Eq. (3.5) with µ = meanrow(X). We
perform 5 projected gradient steps and display the results on Figure 3.1. On the top,
5 projected gradient steps are performed to update H based on the original data X.
On the bottom, 5 projected gradient steps are performed to update H based on the
centered data X. The feasible sets (in dash) are exactly the same, and therefore the
optimal solutions are also the same. However, we observe that the landscape of the
cost function outside the feasible region is smoother when the data are centered. This
allows the solver to converge faster towards the optimal solution, as the gradients point
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Figure 3.1: Influence of centering the data on the cost function topology regarding H
via a small example (m = 2, r = 2, n = 1). Top: without centering. Bottom: with
centering. Five projected gradient steps are shown, decomposed through one gradient
descent step followed by its projection onto the feasible set.
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better towards the optimal solution and the step sizes are larger. The improvement
regarding the convergence speed by applying centering with real data will probably
not be as drastic as in this small example. Still, minimizing a smoother function is
always advantageous, and this will be shown empirically on real data in Section 3.2.3.

3.2.3 Convergence speed and effect of acceleration strategies
on real data

In this subsection, the goal is twofold: (1) show the effect of the extrapolation in
TITAN by comparing Algorithm 3.1 to a non-extrapolated block coordinate descent,
and (2) show the acceleration effect of centering the data.

We will apply the BSSMF model on MNIST and ml-1m (these two datasets are
properly introduced respectively in Section 3.4.1 and Section 3.4.3) in six different sce-
narios: 3 data related scenarios × 2 algorithmic related scenarios. The data scenarios
are raw data, globally centered data, and row-wise centered data (respectively called
‘plain’, ‘globally centered’ and ‘row-wise centered’ in Figure 3.2). Globally centered
data are such that µ = e⊤Xe

mn e and row-wise centered data are such that µ = 1
nXe.

Note that with a global centering, result from [52, Theorem 3] does not hold any-
more. Yet, we propose to see here how this centering strategy behaves. For each data
case, 2 algorithms are tested: (1) Algorithm 3.1, and (2) a standard block coordinate
descent (BCD) which is Algorithm 3.1 where the β’s are fixed to 0; this corresponds
to the popular proximal alternating linearized minimization (PALM) algorithm [12].
When the algorithms are compared on the same data scenario, Algorithm 3.1 always
converges faster and to a better solution than BCD. We also observe that when the
data are centered, globally or row-wise, applying the same algorithm always lead to
faster convergence than on the plain case. Let us first comment the results on ml-1m
(Figure 3.2a). Applying BCD on the globally centered data is almost as fast as apply-
ing Algorithm 3.1 in the plain case, meaning that a good preprocessing is almost as
important as a good acceleration strategy. With BCD only, global centering is faster
than row-wise centering. With Algorithm 3.1, global centering converges faster but
row-wise centering converges to slightly better solutions. The root-mean-square errors

plain globally centered row-wise centered
BCD 0.93 0.89 0.91
Algorithm 3.1 0.87 0.87 0.87

Table 3.1: RMSE on the test set for ml-1m depending on the algorithm and the
centering strategy

(RMSEs) on the test set are available in Table 3.1, highlighting the importance of a
good acceleration strategy. This could be expected, since the centering only affects
the convergence speed, but does not change the solutions. Let us now comment the
results on MNIST shown on Figure 3.2b. Global centering does not really improve
the convergence speed compared to the plain case, regardless of the used algorithm.
Interestingly, row-wise centering provides a great improvement in convergence speed
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Figure 3.2: Evolution of the training error for ml-1m and MNIST, averaged on 10
runs. For ml-1m, r = 5, 1 inner iteration. For MNIST, r = 50, 10 inner iterations.
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and better local minima, regardless of the used algorithm. In this case, a good center-
ing strategy seems even more important than a good acceleration strategy. Globally,
regardless of the dataset, applying Algorithm 3.1 on centered data is the best strategy
as compared with using plain data. As a consequence, it will be our default choice
for the experiments in Section 3.4.

As mentioned above, when entries are missing, Algorithm 3.1 can take advantage
of the sparsity of the data and uses multithreading. We report in Table 3.2 the com-
putation time of Algorithm 3.1 in the experiment settings of Figure 3.2a, given by the
macro @btime from the package BenchmarkTools.jl. The computation time in the
settings of the experiment in Figure 3.2b is reported in Table 3.3. When the dataset
is full, like with MNIST, multithreading is only used for the projections [.]ab and [.]∆r .
Of course, multithreading is also employed for every matrix multiplication. However,
the numbers of threads shown in Tables 3.2 and 3.3 do not affect the computation time
of matrix multiplications, as BLAS selects its own number of threads, independent of
the number assigned to Julia. Note that there is no distinction between Algorithm 3.1
and BCD in terms of computation time because the computation of the acceleration
is negligible compared to the other computations.

# threads 1 2 4 6 8 10 12
time (s) 30.53 5.14 2.98 2.85 3.00 2.78 3.31

Table 3.2: Computation time of Algorithm 3.1 in the experiment settings of Fig-
ure 3.2a depending on the number of used threads.

# threads 1 2 4 6 8 10 12
time (s) 27.79 21.92 16.67 15.22 15.73 16.01 16.65

Table 3.3: Computation time of Algorithm 3.1 in the experiment settings of Fig-
ure 3.2b depending on the number of used threads.

3.3 Identifiability of BSSMF
A main motivation to introduce Bounded simplex-structured matrix factorization
(BSSMF) is that it is identifiable under weaker conditions than NMF. We now state
our main identifiability result for BSSMF, it is a consequence of the identifiability
result of NMF and the following simple observation: X = WH is a BSSMF for the
interval [a, b] implies that be⊤ −X = (be⊤ −W )H and X − ae⊤ = (W − ae⊤)H are
Exact NMF decompositions.

Theorem 3.1 Let W ∈ Rm×r and H ∈ Rr×n satisfy W (:, k) ∈ [a, b] for all k for some

a ≤ b, H ≥ 0, and H⊤e = e. If
(
W−ae⊤

be⊤−W

)⊤
∈ Rr×2m and H ∈ Rr×n are sufficiently

scattered, then the BSSMF (W,H) of X = WH of size r = rank(X) for the interval
[a, b] is essentially unique.
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Proof 3.1 Let (W,H) be a BSSMF of X for the interval [a, b]. As in the proof of
Lemma 3.2, we have

X − ae⊤ = WH − ae⊤ = (W − ae⊤)H,

since e⊤ = e⊤H. This implies that (W −ae⊤, H) is an Exact NMF of X−ae⊤, since
W − ae⊤ and H are nonnegative. Similarly, we have

be⊤ −X = be⊤ −WH = (be⊤ −W )H,

which implies that (be⊤ −W,H) is an Exact NMF of be⊤ −X, since be⊤ −W ≥ 0.
Therefore, we have the Exact NMF

(
X − ae⊤

be⊤ −X

)
=

(
W − ae⊤

be⊤ −W

)
H.

By Theorem 2.1, this Exact NMF is unique if
(
W−ae⊤

be⊤−W

)⊤
and H satisfy the SSC. This

proves the result: in fact, the derivations above hold for any BSSMF of X. Hence, if
(W,H) was not an essentially unique BSSMF of X, there would exist another Exact

NMF of
(
W−ae⊤

be⊤−W

)⊤
, not obtained by permutation and scaling of

((
W−ae⊤

be⊤−W

)
, H

)
, a

contradiction.

Let us note that W − ae⊤ and H being SSC, or be⊤ −W and H being SSC, are
also sufficient conditions for identifiability. These conditions are stronger, as W −ae⊤

being SSC or be⊤−W being SSC implies that
(
W−ae⊤

be⊤−W

)⊤
is SSC. However,

(
W−ae⊤

be⊤−W

)⊤

does not imply that W − ae⊤ or be⊤ −W is SSC. The condition that
(
W−ae⊤

be⊤−W

)⊤
is

SSC is much weaker than requiring W⊤ to be SSC in NMF. In fact, in NMF, W⊤

being SSC requires that it contains some zero entries (at least r − 1 per row [41,
Th. 4.28]; this can also be seen on Figure 2.3 in the case r = 3). Since the SSC is
only defined for nonnegative matrices and W⊤ contains zeros, a has to be equal to
the zero vector. In this case, W⊤ being SSC implies that W⊤ − ea⊤ is SSC, and
hence the corresponding BSSMF is identifiable. However, the reverse is not true. In

fact,
(
W−ae⊤

be⊤−W

)⊤
being SSC means that sufficiently many values in W are equal to its

minimum and maximum bounds in a and b. For example, in recommender systems,
with W (i, j) ∈ [1, 5] for all (i, j), many entries of W are expected to be equal to 1 or

to 5 (the minimum and maximum ratings), so that
(
W−ae⊤

be⊤−W

)⊤
will contain many zero

entries, and hence likely to satisfy the SSC [32]. On the other hand, W is positive,
and hence it cannot be part of an essentially unique Exact NMF.

Let us illustrate the difference between NMF and BSSMF on a simple example.

Example 3.1 (Non-unique NMF vs. unique BSSMF) Let ω ∈ [0, 1) and let

Aω =




ω 1 1 ω 0 0
1 ω 0 0 ω 1
0 0 ω 1 1 ω


 .
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For ω < 0.5, Aω satisfies the SSC, while it does not for ω ≤ 0.5; see [59, Example 3],
[54, Example 2], [41, Example 4.16]. Let us take

H = 3A1/3 =




1 3 3 1 0 0
3 1 0 0 1 3
0 0 1 3 3 1


 ,

which satisfies the SSC, and

W⊤ = 3A2/3 =




2 3 3 2 0 0
3 2 0 0 2 3
0 0 2 3 3 2


 ,

which does not satisfy the SSC, but has some degree of sparsity. The NMF of

X = WH =




11 9 6 2 3 9
9 11 9 3 2 6
3 9 11 9 6 2
2 6 9 11 9 3
6 2 3 9 11 9
9 3 2 6 9 11




is not essentially unique. For example,

X =




0 3 1
1 3 0
3 1 0
3 0 1
1 0 3
0 1 3







0 2 3 3 2 0
3 3 2 0 0 2
2 0 0 2 3 3




is another decomposition which cannot be obtained as a scaling and permutation of
(W,H).

However, the BSSMF of X is unique, taking ai = 0 and bi = 3 for all i. In fact,
(3−W )⊤ satisfies the SSC, as it is equal to 3A1/3, up to permutation of its columns:

3−W⊤ =




1 0 0 1 3 3
0 1 3 3 1 0
3 3 1 0 0 1




= 3A1/3(:, [4, 5, 6, 1, 2, 3]).

Therefore, by Theorem 3.1, the BSSMF of X is unique.

Scaling ambiguity BSSMF is in fact more than essentially unique in the sense
of Definition 2.7. In fact, the scaling ambiguity can be removed because of H being
simplex structured, as shown in the following lemma.



Chapter 3. Bounded Simplex-Structured Matrix Factorization 51

Lemma 3.1 Let H ∈ Rr×n such that e⊤H = e⊤ and rank(H) = r. Let D ∈ Rr×r

be a diagonal matrix, and let H ′ = DH be a scaling of the rows of H, and such that
e⊤H ′ = e⊤. Then D must be the identity matrix, that is, D = I.

Proof 3.2 Let us denote H† ∈ Rn×r the right inverse of H, which exists and is
unique since rank(H) = r, so that HH† = I. We have

e⊤H ′ = e⊤DH = e⊤

⇒ e⊤DHH† = e⊤H† = e⊤

since e⊤H† = e⊤HH† = e⊤

⇒ e⊤D = e⊤ ⇒ D = I.

Note that this lemma does not require H, H ′ and D to be nonnegative.

Geometric interpretation of BSSMF Solving BSSMF is equivalent to finding a
polytope with r vertices within the hyperrectangle defined by [a, b] that reconstructs
as well as possible the data points. The fact that BSSMF is constrained within a
hyperrectangle makes BSSMF more constrained than NMF, and hence more likely
to be essentially unique. This will be illustrated empirically in Section 3.4.2. Let
us provide a toy example to better understand the distinction between NMF and
BSSMF, namely let us use Example 3.1 with W = 3

10A2/3 and H = 2
3A1/2 so that

X = WH is column stochastic. Figure 3.3 represents the feasible regions of NMF
and BSSMF for the hypercube [a, b] = [0, 3

10 ]
3 in a two-dimensional space within the

affine hull of W ; see [41] for the details on how to construct such a representation. For
this rank-3 factorization problem, solving NMF and BSSMF is equivalent to finding
a triangle nested between the convex hull of the data points and the corresponding
feasible region. BSSMF has a unique solution, that is, there is a unique triangle
between the data points and the BSSMF feasible region. On the other hand, NMF
is not identifiable: for example, any triangle within the gray area containing the data
points is a solution.

In summary, for the BSSMF of X = WH to be essentially unique, W must
contain sufficiently many entries equal to the lower and upper bounds, while H must
be sufficiently sparse.

Choice of a and b In practice, if a and b are unknown, it may be beneficial to
choose them such that as many entries of X are equal to the lower and upper bounds,
and hence BSSMF is more likely to be identifiable. Let us denote ãi = minj X(i, j)

and b̃i = maxj X(i, j) for all i, and let X = WH be a BSSMF for the hyperrectangle
[a, b]. We have ã ≥ a and b̃ ≤ b since H(:, j) ∈ ∆r for all j. Hence, without any prior
information, it makes sense to use a BSSMF with interval [ã, b̃] which is contained in
[a, b]. Note that such strategy will make BSSMF sensitive to outliers that are out of
the ideal bounds a and b.

Remark 3.1 Interestingly, as shown in Lemma 3.2 below, in the exact case, that is,
when X = WH, we can assume w.l.o.g. that [ai, bi] = [0, 1] for all i in BSSMF.
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Figure 3.3: Geometric interpretation of BSSMF for Example 3.1. Any triangle in
the gray filled area containing the data points is a rank-3 solution for NMF. On the
contrary, there is a unique rank-3 solution for BSSMF since there is a unique triangle
containing the data points in the BSSMF feasible set.
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Lemma 3.2 Let a ∈ Rm and b ∈ Rm be such that ai < bi for all i. The matrix
X = WH admits a BSSMF for the interval [a, b] if and only if the matrix [X−ae⊤]

[(b−a)e⊤]

admits a BSSMF for the interval [0, 1]m, where [·]
[·] is the component-wise division of

two matrices of the same size.

Proof 3.3 Let us show the direction ⇒, the other is obtained exactly in the same
way. Let the matrix X = WH admit a BSSMF for the interval [a, b]. We have

X − ae⊤ = WH − ae⊤ = (W − ae⊤)H,

since e⊤H = e⊤, as H is column stochastic. This shows that X ′ = X − ae⊤ admits a
BSSMF for the interval [0, b− a] since W ′ = (W − ae⊤) ∈ [0, b− a]. For simplicity,
let us denote c = b− a > 0. We have X ′ = W ′H, while

[X − ae⊤]
[(b− a)e⊤]

=
[X ′]
[ce⊤]

=
[W ′H]

[ce⊤]
=

[W ′]
[ce⊤]

H,

because H is column stochastic. In fact, for all i, j,

[W ′H]i,j
[ce⊤]i,j

=

∑
k W

′(k, i)H(k, j)]i,j
ci

=
∑

k

W ′(k, i)
ci

H(k, j)

=

(
[W ′]
[ce⊤]

H

)

i,j

.

Hence, [X−ae⊤]
[(b−a)e⊤]

admits a BSSMF for the interval [0, 1]m since H is column stochastic,

and all columns of [W ′]
[ce⊤]

= [W−ae⊤]
[(b−a)e⊤]

belong to [0, 1]m.

Remark 3.2 (What if ai = bi for some i?) Lemma 3.2 does not cover the case
ai = bi for some i. In that case, we have W (i, :) = ai = bi and therefore
X(i, :) = W (i, :)H = aie

⊤ = bie
⊤. This is not an interesting situation, and rows of

X with identical entries can be removed. In fact, after the transformation X − ae⊤,
these rows are identically zero.

Lemma 3.2 highlights another interesting property of BSSMF: as opposed to NMF,
it is invariant to translations of the entries of the input matrix, given that a and b
are translated accordingly. For example, in recommender systems datasets such as
Netflix and MovieLens, X(i, j) ∈ {1, 2, 3, 4, 5} for all i, j. Changing the scale, say to
{0, 1, 2, 3, 4}, does not change the interpretation of the data, but will typically impact
the NMF solution significantly3, while the BSSMF solution will be unchanged, if the
interval is translated from [1, 5] to [0, 4] since H is invariant by translation on X. This
property is in fact coming from SSMF.

3In fact, for NMF, it would make more sense to work on the datasets translated to [0, 4], as it
would potentially allow it to be identifiable: zeros in X imply zeros in W and H, which are therefore
more likely to satisfy the SSC.
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Tightness of Theorem 3.1 Unfortunately, the conditions in Theorem 3.1 are not
necessary. This is due to SSC not being necessary for the uniqueness of NMF. Here
is an example with

X =




0.25 0.25 0.75 0.75
0.2 0.6 0.6 0.2
0.75 0.75 0.25 0.25
0.8 0.4 0.4 0.8


 .

The unique BSSMF of X of size 3 with the bounds 0 and 1 is given by

X =




0 0.5 1
0.2 1 0.2
1 0.5 0
0.8 0 0.8




︸ ︷︷ ︸
W



0.75 0.5 0 0.25
0 0.5 0.5 0

0.25 0 0.5 0.75




︸ ︷︷ ︸
H

.

However, H cannot be SSC since there are not at least r − 1 = 2 zeros per row.
The matrix [W⊤ J−W⊤] is sparse enough, yet, it cannot be SSC since its cone does
not contain e − ei for i in 1, . . . , 3. See [42, Chapter 4.2.5] for the details on how
the aforementioned factorization X = WH is a unique NMF, and hence, a unique
BSSMF for our chosen bounds.

3.4 Numerical experiments
The goal of this section is to highlight the motivation points mentioned in Section 3.1
on real data sets. All experiments are run on a PC with an Intel(R) Core(TM) i7-
9750H CPU @ 2.60GHz and 16GiB RAM. Let us recall that in order to retrieve NMF
from Algorithm 3.1, the bounds need to be set to (a, b) = (0,+∞) and the projection
step on the probability simplex in line 16 should be replaced by a projection on the
nonnegative orthant. Hence, in our experiments, both NMF and BSSMF are solved
with the same code implementation.

3.4.1 Interpretability
When applied on a pixel-by-image matrix, NMF allows to automatically extract com-
mon features among a set of images. For example, if each row of X is a vectorized
facial image, the rows of W will correspond to facial features [62].

Let us compare NMF with BSSMF on the widely used MNIST handwritten dig-
its dataset (60, 000 images, 28 × 28 pixels) [60]. Each column of X is a vectorized
handwritten digit. For BSSMF to make more sense, we preprocess X so that the
intensities of the pixels in each digit belong to the interval [0, 1] (first remove from
X(:, j) its minimum entry, then divide by the maximum entry minus the minimum
entry).

Let us take a toy example with n = 500 randomly selected digits and r = 10,
in order to visualize the natural interpretability of BSSMF. The choice of n is made
solely for computational time considerations. For larger n, Figure 3.4b might change
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(a) NMF

(b) BSSMF

Figure 3.4: Reshaped columns of the basis matrix W for r = 10 for MNIST with 500
digits.
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Figure 3.5: Decomposition of an eight by BSSMF with r = 10.

but we will not lose interpretability. Figure 3.4a shows the features learned by NMF
which look like parts of digits. On the other hand, the features learned by BSSMF
in Figure 3.4b look mostly like real digits, because of the bound constraint and the
simplex structure. In fact, as it is well known [62] that NMF learns part-based
representations, in this case, parts of digits. In other words, the columns of W in
NMF identify subset of pixels that are activated simultaneously in as many images as
possible. Now, by the scaling degree of freedom, assume w.l.o.g. that W (:, j) ∈ [0, 1]m

for all j in NMF. Since the columns of W are parts of digits, each digit will have to
use several of these parts, with an intensity close to one, so that H will be far from
being column stochastic. BSSMF, with the simplex constraint on H and the bound
constraints on W , therefore cannot learn such a part-based representation. This is
the reason why BSSMF learns more global features that, added on top of each other,
reconstruct the digits. As it is shown in the MNIST experiment, these features look
like digits themselves. Interestingly, if we progressively increase the upper bound,
we would see that BSSMF progressively learns parts of digits, like NMF (using a
lower bound of zero, that is, BSSMF with [0, u]m with u ≥ 1). This is an indirect
way of balancing the sparsity between W and H. The larger the upper bound, the
more relaxed is BSSMF and hence the sparser W will be (given that the lower bound
is 0). In Figure 3.4b, we distinguish numbers (like 7, 3 and 6). From a clustering
point of view, this is of much interest because a column of H which is near a ray
of the probability simplex can directly be associated with the corresponding digit
from W . In this toy example, due to r being small, an 8 cannot be seen. Nonetheless,
an eight can be reconstructed as the weighted sum of the representations of a 5, a
3 and an italic 1; see Figure 3.5 for an example. Note that since BSSMF is more
constrained than NMF, its reconstruction error might be larger than that of NMF.
For our example (r = 10), BSSMF has relative error ∥X −WH∥F /∥X∥F of 61.56%,
and NMF of 59.04%. This is not always a drawback. In some applications, due to
the presence of noise, although the reconstruction error of BSSMF is larger than that
of NMF, the accuracy of the estimated factors W and H could be better, because it
uses the prior information and is less prone to overfitting and less sensitive to outliers
that might be outside the bounds. See also the discussion in Section 3.4.3 where
NMF has a lower RMSE than BSSMF on the training set, but a larger RMSE than
BSSMF on the test set. Note that we also compute NMFs using Algorithm 3.1 where
the projections are performed on the nonnegative orthant, instead of on the bounded
set for W and on the probability simplex for H. The stopping criteria in lines 3, 11
and 19 of Algorithm 3.1 are a maximum number of iterations equal to 500, 20 and
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20, respectively, for both algorithms.

3.4.2 Identifiability

As it is NP-hard to check the SSC [54], we perform experiments on MNIST and
synthetic data where only a necessary condition for SSC1 is verified, namely [41,
Alg. 4.2].

MNIST dataset On MNIST, to see when H satisfies this condition, we first vary
n from 100 to 300 for m fixed (=28×28). For W⊤, we fix n to 300, and downscale
the resolution m from 28×28 to 12×12 with a linear interpolation (imresize3 in
MATLAB), and the rank r is varied from 12 to 30. Recall that both factors need to
satisfy the SSC to correspond to an essentially unique factorization. In Figure 3.6a,
we see that W⊤ of NMF often satisfies the necessary condition. This is due to NMF
learning “parts” of objects [62], which are sparse by nature, and sparse matrices are
more likely to satisfy the SSC (Definition 2.8). On the contrary, even for a relatively
large n, H is too dense to satisfy the necessary condition. For r ≥ 30, the factor H
generated by NMF never satisfies the condition. Meanwhile, in Figure 3.6b we see
that H of BSSMF always satisfies the condition when n ≥ 225 for r = 30 and more
generally, if n and m are large enough, both H and

(
W

J−W

)⊤
satisfy the necessary

condition. This substantiates that BSSMF provides essentially unique factorizations
more often than NMF does.

Synthetic datasets Let us now perform an experiment to show how BSSMF is
more likely than NMF to recover factors closer to the true ones, even when the
sufficient conditions for identifiability are not satisfied. As there is no groundtruth
for NMF and BSSMF on MNIST, we generate synthetic data as follows. Our synthetic
datasets are of size 100 × 100, and their factorization rank is 10. The matrix H is
generated randomly with values uniformly distributed between zero and one, and we
randomly set 30% of the values to zero. This allows us to ensure that H satisfies the
SSC. The reason behind ensuring that H is SSC is that both NMF (Theorem 2.1) and
BSSMF (Theorem 3.1) require that H satisfies the SSC4. As we want to emphasize
on how likely it is to retrieve the true factors for NMF and BSSMF, we make sure
that their common conditions for identifiability are satisfied. The matrix W is also
generated randomly with values uniformly distributed between zero and one, and we
then set a percentage of p0,1 of the entries to zero and one, with the same probability
to be equal to zero or one. Hence, p0,1 percent of the values in W touches the lower
and upper bounds in BSSMF. Finally, we let X = WH to get our synthetic data.
We solve NMF and BSSMF on X using Algorithm 3.1. To assess the quality of the
solutions, we report the average of the mean removed spectral angle (MRSA) and
the subspace angle (see Definition 6.2) between the columns of the true W and the
estimated W (after an optimal permutation of the columns), as this is standard in

4In this experiment, because n and r are smaller, we could check that the SSC is satisfied (not a
necessary condition), using Gurobi (https://www.gurobi.com/), a global optimization software.

https://www.gurobi.com/
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Figure 3.6: Ratio, over 10 runs, of the factors generated by NMF in Figure 3.6a and
by BSSMF in Figure 3.6b that satisfy the necessary condition for SSC1 (white squares
indicate that all matrices meet the necessary condition, black squares that none do).
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the NMF literature. Given any two vectors a and b, their MRSA is defined as

MRSA(a, b) =
100

π
arcos

(
(a− ae)⊤(b− be)

∥a− ae∥2∥b− be∥2

)
∈ [0, 100] ,

where · is the average of the entries of a vector.
We vary the percentage p0,1 of values touching the lower and uppper bounds in W

(namely, 0 and 1) from 0% to 30% with a 5% increment. For each value of p0,1, the
test is performed 20 times. Let us note that among the generated true W ’s, between
p0,1 = 0% and p0,1 = 15%,

(
W

J−W

)⊤
never satisfies the necessary conditions for SSC1.

For p0,1 = 20%, 3 out of the 20 generated
(

W
J−W

)⊤
satisfies the necessary conditions

for SSC1, 10 out of 20 for p0,1 = 25%, and 17 out of 20 for p0,1 = 30%. Let us also note
that for all values of p0,1 within the considered range, W never satisfies the necessary
conditions for SSC1. The distribution of the average MRSAs and the subspace angle
are respectively reported in Section 3.4.2 and Section 3.4.2. Clearly, the MRSA is
always smaller for BSSMF compared to NMF, even when the necessary conditions
for SSC1 are not satisfied for

(
W

J−W

)⊤
; this is because the feasible set of BSsMF is

contained in that of NMF, and hence the generated factors are more likely to be closer
to the ground truth. This also illustrates that the conditions of Theorem 3.1 for the
identifiability of BSSMF are only sufficient, since BSSMF finds solutions with MRSA
close to machine epsilon when these conditions are not fulfilled.

3.4.3 Robustness to overfitting
In this section we compare unconstrained matrix factorization (MF), NMF and
BSSMF on the matrix completion problem; more precisely, on rating datasets for
recommendation systems. Let X be an item-by-user matrix and suppose that user j
has rated item i, that rating would be stored in Xi,j . The matrix X is then highly
incomplete since a user has typically only rated a few of the items. In this context,
NMF looks for nonnegative factors W and H such that M ◦X ≈ M ◦ (WH), where
Mi,j is equal to 1 when user j rated item i and is equal to 0 otherwise. A missing
rating Xi,j is then estimated by computing W (i, :)H(:, j). Features learned by NMF
on rating datasets tend to be parts of typical users. Yet, the nonnegative constraint
on the factors hardly makes the features interpretable by a practitioner. Suppose
that the rating a user can give is an integer between 1 and 5 like in many rating
systems, NMF can learn features whose values may fall under the minimum rating
1 or may exceed the maximum rating 5. Consequently, the features cannot directly
be interpreted as typical users. On the contrary, with BSSMF, the extracted features
will directly be interpretable if the lower and upper bounds are set to the minimum
and maximum ratings. On top of that, BSSMF is expected to be less sensitive to
overfitting than NMF since its feasible set is more constrained.

This last point will be highlighted in the following experiment on the ml-1m
dataset5, which contains 1 million ratings from 6040 users on 3952 movies. As in [67],
we split the data in two sets : a training set and a test set. The test set contains 500

5https://grouplens.org/datasets/movielens/1m/

bssmf:https://grouplens.org/datasets/movielens/1m/
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Figure 3.7: Boxplots of the average MRSA and subspace angle between the true W
and the estimated W by NMF and BSSMF for the hypercube [0, 1]100 over 20 trials,
depending on the percentage, p0,1, of values equal to 0 and 1 in the true W .
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r BSSMF NMF MF
1 0.97± 2· 10−5 0.88± 0.002 0.91± 5· 10−6

5 0.87± 0.001 0.87± 0.003 0.87± 0.003
10 0.86± 0.002 0.87± 0.001 0.87± 0.002
20 0.87± 0.002 0.87± 0.002 0.88± 0.002
50 0.88± 0.002 0.90± 0.004 0.93± 0.004

100 0.89± 0.003 0.92± 0.003 0.99± 0.004

Table 3.4: RMSE on the test set according to r, averaged ± standard deviation on
10 runs on ml-1m

users. We also remove any movie that has been rated less than 5 times from both
the training and test sets. For the test set, 80% of a user’s ratings are considered as
known. The remaining 20% are kept for evaluation. During the training, we learn W
only on the training set. During the testing, the learned W is used to predict those
20% kept ratings of the test set by solving the H part only on the 80% known ratings.
This simulates new users that were not taken into account during the training, but for
whom we would still want to predict the ratings. The reported RMSEs are computed
on the 20% kept ratings of the test set. In order to challenge the overfitting issue,
we vary r in {1, 5, 10, 20, 50, 100} for BSSMF, NMF and an unconstrained MF which
are all computed using Algorithm 3.1, where the projections onto the feasible sets are
adapted accordingly (projection onto the nonnegative orthant for NMF, no projection
for unconstrained MF). The stopping criteria in lines 3, 11 and 19 of Algorithm 3.1
are a maximum number of iterations equal to 200, 1 and 1, respectively, for all algo-
rithms. The experiment is conducted on 10 random initializations and the average
RMSEs are reported is Table 3.4. As expected, BSSMF and NMF are more robust to
overfitting than unconstrained MF. Additionnaly, BSSMF is also clearly more robust
to overfitting than NMF. Its worse RMSE is 0.89 with r = 100 (and it is still equal to
0.89 with r = 200), while, for NMF, the RMSE is 0.92 when r = 100 (which is worse
than a rank-one factorization giving a RMSE of 0.91).

The same experiment is conducted on the ml-100k dataset6 which contains 100,000
ratings from 1,700 movies rated by 1,000 users. The test set contains 50 users. The
results are reported in Table 3.5, and the observations are similar: BSSMF is signifi-
cantly more robust to overfitting than NMF and unconstrained MF.

3.5 Conclusion

In this chapter, we proposed a new factorization model, namely bounded simplex
structured matrix factorization (BSSMF). Fitting this model retrieves interpretable
factors: the learned basis features can be interpreted in the same way as the original
data while the activations are nonnegative and sum to one, leading to a straight-
forward soft clustering interpretation. Instead of learning parts of objects as NMF,

6https://grouplens.org/datasets/movielens/100k/

bssmf:https://grouplens.org/datasets/movielens/100k/
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r BSSMF NMF MF
1 0.98± 1· 10−4 0.91± 3· 10−5 0.91± 5· 10−5

5 0.89± 0.005 0.89± 0.01 0.89± 0.008
10 0.90± 0.008 0.90± 0.009 0.92± 0.01
20 0.91± 0.01 0.93± 0.01 0.97± 0.02
50 0.93± 0.01 0.97± 0.01 1.06± 0.03

100 0.94± 0.01 1.01± 0.007 1.13± 0.02

Table 3.5: RMSE on the test set according to r, averaged ± standard deviation on
10 runs on ml-100k

BSSMF learns objects that can be used to explain the data through convex combi-
nations. We have proposed a dedicated fast algorithm for BSSMF, and showed that,
under mild conditions, BSSMF is essentially unique. We also showed that the con-
straints in BSSMF make it robust to overfitting on rating datasets without adding
any regularization term. Further work could include:

• the use of BSSMF for other applications,

• the design of more efficient algorithms for BSSMF, and

• the design of algorithms for other BSSMF models, e.g., with other data fitting
terms such as the Kullback-Leibler divergence, as done recently in [66] for SSMF
with nonnegativity constraint on W .



Chapter 4

Identifiability of Polytopic
Matrix Factorization

Kino - Спокойная ночь

NMF is not essentially unique in general. However, it has been proven to be iden-
tifiable under the sufficiently scattered conditions (SSC). A geometric interpretation
of these sufficient conditions is the following: while making sure that X = WH and
that W is nonnegative, it is not possible to decrease the “volume” of the cone of W⊤

without making the cone of H get out of the nonnegative orthant, and vice versa; see
Section 2.3.1 for details.

In this chapter, we focus on the identifiability of polytopic matrix factorization
(PMF). With NMF, the feasible domain is the nonnegative orthant. With PMF,
the feasible domains are convex polytopes: the columns of W⊤ and H belong to
the polytopes PW and PH , respectively. A variant of PMF has already been studied
in [91, 92] where the authors proposed a structured matrix factorization where: (i) the
matrix W is unconstrained, (ii) the columns of H belong to a convex polytope, and
(iii) the goal is to find a factorization maximizing the volume of the convex hull of the
columns of H. This model, proposed in [91, 92], is also referred to as PMF, although
it would have been more appropriate to refer to it as maximum-volume PMF. In fact,
their proposed model could be viewed as a polytopic variant of minimum-volume
semi-NMF; see [35] and Section 2.3.2, while our proposed model would rather be a
polytopic variant of NMF.

Outline and contribution of the chapter Inspired by the identifiability condi-
tions in [92] and similarly to Theorem 2.1, our main contribution in this chapter is
to show that if the convex hull of W⊤ and H are sufficiently scattered within their
respective polytope, then the corresponding PMF is identifiable (Theorem 4.1).

In Section 4.1 we introduce PMF. Section 4.2 provides important definitions and
properties. In Section 4.3 we prove our main result. Section 4.4 presents known
structured matrix factorization that are special cases of PMF, and how our theoretical
finding relates to previous results.
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4.1 Polytopic Matrix Factorization

In this chapter, we consider convex polytopes, that is, bounded polyhedra. A convex
polytope P can always be expressed in V-form, through a convex combination of its
vertices:

P = conv(V ) = {x | x = V h, h ≥ 0,
∑

i

hi = 1}, (4.1)

where the columns of V are the vertices, or the extremum points, of P. We can now
define PMF. Given a data matrix X ∈ Rm×n and r, PMF computes W and H such
that

X = WH s.t. W (i, :) ∈ PW for all i in 1, . . . ,m,

H(:, j) ∈ PH for all j in 1, . . . , n,
(4.2)

where W ∈ Rm×r is the basis matrix, H ∈ Rr×n is the coefficient matrix, PW and PH

are convex polytopes that respectively constrain the rows of W and the columns of H.
This PMF is referred to as the quadruple (W,H,PW ,PH). This framework is quite
general: it offers infinite varieties of structured matrix factorizations that promote
different behaviors in the latent space, depending on the choice of PW and PH . As
we will show in Section 4.4, PMF recovers factorizations that have been studied in
the literature.

4.2 Definitions and Properties

In this section, we provide important definitions and properties that are needed to
achieve our main result on the identifiability of PMF (Theorem 4.1 in Section 4.3).

Identifiability. Let us clarify what is meant by identifiability. A PMF
(W,H,PW ,PH) is identifiable if for any other PMF (W∗, H∗,PW ,PH) of X, there
exist a permutation matrix Π and a diagonal matrix D with diagonal values in {−1, 1}
such that W∗ = WΠ⊤D−1 and H∗ = DΠH. We will refer to a matrix of the form
DΠ as a signed permutation. Essential uniqueness of PMF is stronger than the NMF
one, as it only allows a sign ambiguity, while NMF allows a scaling ambiguity.

Maximum-volume ellipsoid and sufficient scatteredness. Our sufficient scat-
teredness conditions that guarantee identifiability heavily rely on the notion of ellip-
soids. Given a center, x ∈ Rr, and a positive definite matrix E, an ellipsoid is defined
as E(E, x) :=

{
x ∈ Rr|(x− x)⊤E(x− x) ≤ r

}
. Its volume is given by vol(E(E, x)) =

rr/2Ωr√
det(E)

where Ωr is the volume of a ball of radius 1 in Rr. The axis of the ellipsoid are

given by the eigenvectors of E, and their length is inversely proportional to the square
root of corresponding eigenvalues; see, e.g., [93]. Given an ellipsoid E(E, x) and an in-
vertible matrix Q, it can be shown that Q(E(E, x)) = {Qx|x ∈ E} = E(Q−⊤EQ−1, y)
where y = Qx, and hence the volume of QE equals the volume of E times |det(Q)|.
This will be useful in our identifiability proof.
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The Maximum-Volume Inscribed Ellipsoid (MVIE) of a polytope P, denoted EP , is
defined as the ellipsoid EP ⊂ P with maximum volume vol(E(E, x)), that is, for which
det(E) is minimized. It can be computed by solving a convex semidefinite program;
see, e.g., [13, Chap. 8.4.2]. A convex set is said to be sufficiently scattered relative to
a polytope when it is contained in that polytope while containing the MVIE of this
polytope [92].

Our identifiability result will be based on the following sufficient scatteredness
condition:

Definition 4.1 (Sufficiently Scattered Factor [92]) The matrix H ∈ Rr×n is
called a sufficiently scattered factor (SSF) corresponding to P if
[PMF.SSC1] P ⊇ conv(H) ⊃ EP , and
[PMF.SSC2] conv(H)∗,gP ∩ bd(E∗,gPP ) = ext(P∗,gP ),
where EP is the MVIE of P centered at gP .

The idea behind the condition [PMF.SSC1] is similar to [SSC1] in Theorem 2.1,
as both conditions ensure that the considered factor is sufficiently scattered within its
feasible set. The MVIE acts like the second order cone C in [SSC1] which is the largest
cone contained in the nonnegative orthant. Here, [PMF.SSC1] ensures that the convex
hull of a factor H is contained in the polytope P and contains the MVIE of P. The
second condition [PMF.SSC2] makes sure that the MVIE is not contained too tightly.
Let us illustrate why [PMF.SSC2] is important with the PMF (H⊤, H,∆3,∆3) using
Example 3 from [59], see also [54, Example 2]:

H =
1

3



1 2 2 1 0 0
2 1 0 0 1 2
0 0 1 2 2 1


 . (4.3)

As it can be seen on Fig. 4.1a, H satisfies [PMF.SSC1]. However, Fig. 4.1b exposes
why H does not satisfy [PMF.SSC2], and it turns out that the PMF (H⊤, H,∆3,∆3)
is not identifiable:

Q =
1

3



−1 2 2
2 −1 2
2 2 −1




provides another PMF, (H⊤Q⊤, QH,∆3,∆3), while QH is not a signed permutation
of the rows of H:

QH =
1

3



1 0 0 1 2 2
0 1 2 2 1 0
2 2 1 0 0 1


 .

Permutation-and/or-sign-only invariant sets. In addition to the sufficient
scatteredness, the identifiability of PMF will rely on the following condition for the
sets of vertices of PW and PH .

Definition 4.2 A set X is called a permutation-and/or-sign-only invariant (PSOI)
set if, and only if, every linear transformation A such that A(X ) = X is a signed
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bd(∆3)
H

conv(H)
E∆3

(a) Visualization of why H satisfies [PMF.SSC1].

bd(∆3∗,g)
ext(conv(H)∗,g)

conv(H)∗,g

bd(E∗,g∆3 )

(b) Visualization of why H does not satisfy [PMF.SSC2].

Figure 4.1: A small example, with H from Eq. (4.3) and g =
(
1/3 1/3 1/3

)⊤,
showing how [PMF.SSC1] can be satisfied without [PMF.SSC2] being satisfied.
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permutation, that is, A = DΠ where Π is a permutation matrix and D is a diagonal
matrix with diagonal entries in {−1, 1}.

The set of vertices of full-dimensional polytopes will in most cases be PSOI sets.

Lemma 4.1 Let the columns of V ∈ Rr×n contain the vertices of the polytope V ⊂ Rr

and such that rank(V ) = r (this holds for full-dimensional polytopes). Let A ∈ Rr×r

be such that AV = V (:,Π) for some permutation Π. Then A is an orthogonal matrix,
that is, a rotation of Rr.

Proof 4.1 Since A permutes the columns of V , and the set of permutations is finite,
there exists n such that AnV = V . Since V has rank r, it admits a right inverse,
so that An = Ir, where Ir is identity matrix of dimension r. This implies that the
eigenvalues of A are roots of 1, and hence A is orthogonal, that is, A⊤A = Ir.

In two dimensions, sets that are not PSOI are any regular polygon centered at
the origin, except for the square (which is obtained by a rotation of 90 or 180 degrees
in which case A is a signed permutation). For example, the vertices of the regular
triangle given by the columns of

V =

(
0
√
3/2 −

√
3/2

1 −1/2 −1/2

)

are preserved by a rotation of 120 degrees, corresponding to A =

(
−1/2

√
3/2

−
√
3/2 −1/2

)
,

and AV =

(√
3/2 −

√
3/2 0

−1/2 1/2 1

)
.

In Section 4.4, we will use two polytopes: ∆r and [a, b]r for b > a. Let us show
that their vertices are PSOI sets. For ∆r, this is trivial since ∆r = conv(Ir), hence
any A that satisfies AIr = Ir(:,Π) for some permutation Π must be a permutation
(note there is no sign ambiguity possible here). For the hypercube [a, b]r, let us first
prove the following lemma.

Lemma 4.2 Let a < b be scalars, and d ∈ Rr with ∥d∥2 = 1 be such that d⊤x ∈ {a, b}
for all x ∈ {a, b}r. Then d is a unit vector, up to multiplication by -1.

Proof 4.2 Let us prove the result by induction. For r = 1, the result is trivial,
we must have d = 1. Assume the result holds for all r′ < r, and let us denote
d = [dr−1, dr] with dr−1 ∈ Rr−1, and similarly for x. We have for all x ∈ {a, b}r that

d⊤x = d⊤r−1xr−1 + drxr ∈ {a, b}.
If dr ∈ {−1, 0, 1}, the result follows by induction since ∥d∥2 = 1. Hence, assume
dr /∈ {−1, 0, 1}. We have

d⊤r−1xr−1 + dra ∈ {a, b} and d⊤r−1xr−1 + drb ∈ {a, b}.
Let us denote α = d⊤r−1xr−1, we have

α ∈ {a− dra, b− dra} and α ∈ {a− drb, b− drb}.
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Since a ̸= b, a− dra ̸= a− drb and b− dra ̸= b− drb as dr ̸= 0, a− dra ̸= b− drb as
dr ̸= 1, and b − dra ̸= b − drb as dr ̸= −1. Hence, α cannot exist for xr ∈ {a, b}, a
contradiction.

Corollary 4.1 The set of vertices of [a, b]r is a PSOI set.

Proof 4.3 The set of vertices of [a, b]r are all vectors in {a, b}r. Let the columns
of V ∈ Rr×2r contain the vertices of [a, b]r, and the linear transformation A satisfy
AV = V (:,Π) for some permutation Π. By Lemma 4.1, A is orthogonal hence its
rows have unit ℓ2 norm. This implies that every row of A must satisfy the condition
of Lemma 4.2 and hence are unit vectors. Since rows of A are orthogonal, A must be
a signed permutation.

4.3 Identifiability
We can now state our main result: it fills a gap in the literature by combining the
ideas of the identifiability of maximum-volume PMF in [92], and of NMF in [54].

Theorem 4.1 Let (W,H,PW ,PH) be a PMF of X of size r = rank(X). If W⊤ and
H are SSFs, and ext(PW ) and ext(PH) are PSOI sets, then the PMF (W,H,PW ,PH)
of X = WH of size r = rank(X) is identifiable.

Proof 4.4 This proof follows that from [92, Th. 6] where only H is required to be
sufficiently scattered while its volume is maximized. Let Q ∈ Rr×r be an invertible
matrix such that (WQ−1, QH) is a PMF of X with

conv(Q−⊤W⊤) ⊆ PW and conv(QH) ⊆ PH . (4.4)

Since W⊤ and H are sufficiently scattered factors, their convex hull contains their
corresponding MVIE:

EPW
⊂ conv(W⊤) and EPH

⊂ conv(H). (4.5)

Then, Eq. (4.4) leads to

Q−⊤(EPW
) ⊆ PW and Q(EPH

) ⊆ PH . (4.6)

The set Q−⊤(EPW
) (resp. Q(EPH

)) is still an ellipsoid of volume |det(Q−1)|
vol(EPW

) (resp. |det(Q)| vol(EPH
)). By definition of the MVIE, we have

|det(Q−1)| vol(EPW
) ≤ vol(EPW

) and |det(Q)| vol(EPH
) ≤ vol(EPH

)

⇔| det(Q−1)| ≤ 1 and |det(Q)| ≤ 1⇔ |det(Q)| = 1.

This implies that Q−⊤ and Q respectively map EPW
and EPH

onto themselves :

Q−⊤(EPW
) = EPW

and Q(EPH
) = EPH

. (4.7)

The remaining of the proof is exactly like in the remaining proof of [92, Th. 6] by
focusing on either H or W⊤. Focus on H for example, and using [PMF.SSC2], the
idea is to show that Q(ext(PH)) = ext(PH). Then, because ext(PH) is a PSOI set,
Q has to be a signed permutation.
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The last part of the proof of Theorem 4.1 does not rely on both W⊤ and H
satisfying [PMF.SSC2], and on both ext(PW ) and ext(PH) being PSOI sets. Actu-
ally, Theorem 4.1 remains valid if only one the factors satisfies [PMF.SSC2] and if the
vertices of its corresponding polytope form a PSOI set.

Corollary 4.2 Let W⊤ and H satisfy [PMF.SSC1] and
(i) W⊤ satisfy [PMF.SSC2] and ext(PW ) be a PSOI set,

or
(ii) H satisfy [PMF.SSC2] and ext(PH) be a PSOI set,

then the PMF (W,H,PW ,PH) of X = WH of size r = rank(X) is identifiable.

Proof 4.5 The same proof as Theorem 4.1 applies. By symmetry, whether it is (i)
or (ii) that is verified allows us to conclude that Q is a signed permutation.

The PSOI set condition can be relaxed to sets that are “mutually” PSOI, that
is, there cannot exist a matrix A which is not a signed permutation such that
A−⊤(ext(PW )) = ext(PW ) and A(ext(PH)) = ext(PH).

Corollary 4.3 Let (W,H,PW ,PH) be a PMF of X of size r = rank(X). If W⊤

and H are SSFs, and ext(PW ) and ext(PH) are mutually PSOI sets, then the PMF
(W,H,PW ,PH) of X = WH of size r = rank(X) is identifiable.

Proof 4.6 The same proof as Theorem 4.1 applies up to Eq. (4.7). Then, W⊤ and
H satisfying [PMF.SSC2] leads to Q−⊤(ext(EPW

)) = ext(EPW
) and Q(ext(EPH

)) =
ext(EPH

). Then, because ext(PW ) and ext(PH) are mutually PSOI sets, Q has to be
a signed permutation.

4.4 Examples of PMF
In this section, we show that some known constrained matrix factorizations are special
instances of PMF, and explain how Theorem 4.1 relates to known identifiability results
for these special cases.

4.4.1 Nonnegative Matrix Factorization (NMF)

An NMF, X = WH, requires W and H to be component-wise nonnegative. This
is not a PMF since the nonnegative orthant is unbounded. However, if W⊤ and H
do not contain a column full of zeros (which can be assumed w.l.o.g.), then there
exist two diagonal matrices, Dl and Dr, such that DlWe = e and e⊤HDr = e⊤.
Hence, we can transform the NMF X = WH into the PMF (W̃ , H̃,∆r,∆r) of X̃
with X̃ = DlXDr, where W̃ = DlW and H̃ = HDr.

Interestingly, the identifiability conditions for NMF in Theorem 2.1 and for PMF
in Theorem 4.1 are equivalent, because H̃ satisfies the SSC in Definition 2.8 if and
only if H̃ is an SSF according to Definition 4.1, while ext(∆r) is a PSOI set (see
Section 4.2). This is due to the fact that EPW

= EPH
= C ∩∆r, since the MVIE of
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∆r is an (r − 1)-dimensional ball centered at 1
r e of radius 1√

r(r−1)
, within the affine

subspace {x ∈ Rr, e⊤x = 1}. Indeed, the diagonal matrices are just rescaling the rows
of W and the columns of H such that they belong to ∆r. Hence, C ∩∆r ⊆ conv(H̃)
if and only if C ⊆ cone(H), and by symmetry this also holds for W̃⊤ and W⊤.

4.4.2 Factor-Bounded Matrix Factorization
Factor-bounded matrix factorization (FBMF) requires the elements of each factor to
be bounded. Given a < b ∈ R, we write a ≤W ≤ b if a ≤W (i, k) ≤ b for all (i, k).

Definition 4.3 (Factor-Bounded MF) Let X ∈ Rm×n, r be an integer, lW <
uW ∈ R and lH < uH ∈ R. The pair (W,H) ∈ Rm×r ×Rr×n is a FBMF of X of size
r for the intervals [lW , uW ] and [lH , uH ] if

X = WH such that lW ≤W ≤ uW , lH ≤ H ≤ uH . (4.8)

This means that each row of W then belongs to the hypercube [lW , uW ]r and each
column of H belongs to the hypercube [lH , uH ]r. In [70], the authors propose a
nonnegative FBMF (NFBMF), where 0 ≤ lW and 0 ≤ lH in Eq. (4.8). They showed
that NFBMF is particularly well suited for clustering tasks. To the best of our
knowledge, FBMF has never been proven to be identifiable. Since Eq. (4.8) is a PMF
with the choice PW = [lW , uW ]r and PH = [lH , uH ]r, Theorem 4.1 applies to FBMF.
The MVIE EPW

is an r-dimensional ball centered at uW+2lW
2 e of radius uW−lW

2 , and
similarly for EPH

, while ext(PW ) and ext(PH) are PSOI sets (Corollary 4.1).

4.4.3 Bounded Simplex-Structured Matrix Factorization
Bounded simplex-structured matrix factorization (BSSMF) was already presented in
Chapter 3 as model useful to explain data that are convex combinations of vectors
belonging to a hyperrectangle [a, b], where a ≤ b ∈ Rm. The convex combinations are
the columns of H and the vectors belonging to [a, b] are the columns of W . For more
details on BSSMF, refer to Chapter 3. BSSMF does not belong to the class of PMFs.
The hyperrectangle constraint on the columns of W cannot in general be expressed as
a polytopic constraint on the rows of W . However, when all entries of a, and of b, are
equal to one another, the hyperrectangle constraint becomes a hypercube constraint
that can be expressed by a polytopic row wise constraint. For example, when X
corresponds to a set of vectorized images, the intensity of a pixel belongs to [0, 1]. If
there is no specific pixel position that should be bounded differently than the others,
every row of W is bounded in the same way. In other words, the rows of W belong to
the hypercube [0, 1]r. Another example is when X is a rating matrix whose entries
are ordinal, e.g., the Netflix matrix with entries in {1, 2, 3, 4, 5} ∈ [1, 5]. In these
cases, BSSMF uses a hypercube [a, b]m and is equivalent to PMF since Equation (3.2)
is equivalent to Eq. (4.2) with PW = [a, b]r and PH = ∆r. BSSMF was shown
to be identifiable under conditions described in Theorem 3.1, different from the ones
in Theorem 4.1. When BSSMF and PMF are equivalent, which identifiability theorem
is the strongest? Since BSSMF is invariant by translation along e, we can assume
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w.l.o.g. that a = 0 for the sake of simplicity. Also, we do not need to focus on
the conditions for H. Indeed, when H(:, j) ∈ ∆r for all j, [SSC1] is equivalent to
[PMF.SSC1] because the MVIE of PH = ∆r is equal to C ∩∆r. We then focus on the
sufficient scatteredness of W⊤. The MVIE of [0, b]r is a ball E[0,b]r centered at b

2e of
radius b

2 . This ball is tightly contained by C, which means that for any convex set A
that contains E[0,b]r , C ⊆ cone(A). As a consequence, if W⊤ satisfies [PMF.SSC1], W⊤

satisfies [SSC1], which implies that
(

W
be⊤−W

)⊤
satisfies [SSC1]. However, it is possible

that
(

W
be⊤−W

)⊤
satisfies [SSC1] while W⊤ does not satisfy [PMF.SSC1]. Here is an

example with PW = [0, 1]3:

W⊤ =



0.8 0 0.2 0.2 0.8 1
0.2 0.8 0 1 0.2 0.8
0 0.2 0.8 0.8 1 0.2


 . (4.9)

As it can be seen in Fig. 4.2a, the cone of
(

W
1−W

)⊤
contains C because W reaches

enough times the minimum and maximum bounds 0 and 1. However, in Figure 4.2b
the convex hull of W⊤ does not contain the MVIE of [0, 1]3. Therefore, Theorem 4.1
is quite general but is not as strong as Theorem 3.1 for BSSMF.

4.5 Conclusion
We presented PMF, a structured matrix factorization model where the latent space
of the factors is constrained by given polytopes. The choice of the polytopes should
depend on the data and the application at hand. When the polytopes have certain
invariant properties, we derived some sufficient conditions under which the identifi-
ability of a PMF is guaranteed. Geometrically, these conditions are based on the
scatteredness of the factors within the constraining polytopes.
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bd(∆3)
(

W
1−W

)⊤

cone
((

W
1−W

)⊤) ∩∆3

C ∩∆3

(a) [SSC1] being satisfied.

bd(∆3)

W⊤

conv(W⊤)
bd(E[0,1]3)
bd([0, 1]3)

(b) [PMF.SSC1] not being satisfied.

Figure 4.2: Visualization of
(

W
1−W

)⊤
from Eq. (4.9) satisfying [SSC1] while W⊤ does

not satisfy [PMF.SSC1]. The cone of
(

W
1−W

)⊤
contains C, while the convex hull of

W⊤ does not contain the ball E[0,1]3 .



Chapter 5

Randomized Successive
Projection Algorithm for
Separable NMF

YĪN YĪN - One Inch Punch

In general, NMF is NP-hard [96] and not necessarily identifiable (Section 2.3.1), which
are two main issues of NMF. However, under the separability assumption, it is solvable
in polynomial time and is identifiable [5]. This assumption states that for every vertex
(column of W ), there exists at least one data point (column of X) equal to this vertex.
In blind HU, which consists in identifying the materials present in a hyperspectral
image as well as their distribution in the pixels of the image, this is known as the
pure-pixel assumption and means that for each material, there is at least one pixel
composed almost purely of this material. Many algorithms have been introduced that
leverage this assumption, see for instance [42, Chapter 7] and the references therein.
Recently, algorithms for separable NMF that are provably robust to noise have been
introduced [5]. One of the most widely used is the successive projection algorithm
(SPA) [4].

SPA is robust to noise and generally works well in practice. However, it suffers
from several drawbacks, notably it is sensitivity to outliers. SPA is deterministic, that
is for a given problem it gives the same result at every run. It is also greedy, in the
sense that it extract vertices sequentially, so an error at a given iteration cannot be
compensated in the following iterations. In this chapter, we aim at addressing the
sensitivity to outliers by designing a non-deterministic variant of SPA that could be
run several times, in the hope that at least one run will not extract outliers.

Let us discuss an observation from [79]. The separable NMF algorithm called
vertex component analysis (VCA) [80] includes a random projection, therefore it is
non-deterministic and at each run it produces potentially a different result. VCA is
simpler and its guarantees are weaker than those of SPA, and the experiments in [79]
show that VCA performs worse than SPA on average, but they also show that the
best result of VCA over many runs is in most cases better that the result of SPA in

73

https://yinyin.bandcamp.com/album/one-inch-punch


74

terms of reconstruction error. This observation is our main motivation to design a
non-deterministic variant of SPA, that we coin as randomized SPA (RandSPA).

Outline and contribution of the chapter In Section 5.1 we introduce the general
form of recursive algorithm for separable NMF analyzed in [46] which generalizes SPA.
In Section 5.2 we present the main contribution of this chapter, that is a randomized
variant of SPA, called RandSPA. We show the theoretical results on the robustness to
noise of SPA still hold for RandSPA, while the randomization allows to better handle
outliers by allowing a diversity in the solutions produced. In Section 5.3 we illustrate
the advantages of our method with experiments on both synthetic datasets and the
unmixing of hyperspectral images.

5.1 Successive Projection Algorithm
In this section, we discuss the successive projection algorithm (SPA). It is based on
the separability assumption, detailed below.

Assumption 5.1 (Separability) The m-by-n matrix X ∈ Rm×n is r-separable if
there exist a nonnegative matrix H such that X = X(:,J )H, where X(:,J ) denotes
the subset of columns of X indexed by J and |J | = r.

The pseudocode for a general recursive algorithm for separable NMF is given in
Algorithm 5.1. Historically, the first variant of Algorithm 5.1 has been introduced
by Araújo et al. [4] for spectroscopic component analysis with f(x) = ∥x∥22 = x⊤x,
which is the so-called SPA. In the noiseless case, that is, under Assumption 5.1, SPA
is guaranteed to retrieve J and more generally, the vertices of the set of points which
are the columns of X [71]. This particular choice of f is proved to be the most robust
to noise given the bounds in [46]. See Theorem 5.1 with Q = I for the error bounds.
The algorithm is iterative and is composed of the following two main steps:

• Selection step: the column that maximizes a given function f is selected (line 3).

• Projection step: all the columns are projected onto the orthogonal complement
of the current selected columns (line 5).

These two steps are repeated r times, r being the target number of extracted columns.
The drawback with the ℓ2-norm is its sensitivity to outliers and the fact that it makes

SPA deterministic. If some outliers are selected, running SPA again would still retrieve
the exact same outliers.

5.2 Randomized SPA
In this section, we introduce the main contribution of this work, that is a randomized
variant of SPA called RandSPA. Its key features are that it computes potentially
different solutions at each run, thus allowing a multi-start strategy, and that the
theoretical robustness results of SPA still hold.
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Algorithm 5.1: Recursive algorithm for separable NMF [46]. It coincides
with SPA when f(x) = ∥x∥22.
Input: An r-separable matrix X ∈ Rm×n, a function f to maximize.
Output: Index set J of cardinality r such that X ≈ X(:,J )H for some

H ≥ 0.
1 Let J = ∅, P⊥ = Im, V = [ ].
2 for k = 1 : r do
3 Let jk = argmax1≤j≤n f(P

⊥X(:, j)). (Break ties arbitrarily, if necessary.)
4 Let J = J ∪ {jk}.
5 Update the projector P⊥ onto the orthogonal complement of X(:,J ):

vk =
P⊥X(:, jk)

∥P⊥X(:, jk)∥2
,

V = [V vk],

P⊥ ←
(
Im − V V T

)
.

RandSPA follows Algorithm 5.1 with f(x) = x⊤QQ⊤x, with Q ∈ Rm×ν being a
randomly generated matrix with ν ≥ r. To control the conditioning of Q, we generate
the columns of Q such that they are mutually orthogonal and such that

∥Q(:, 1)∥2 = 1 ≥ · · · ≥ ∥Q(:, ν)∥2 = 1/
√
κ

where κ is the desired conditioning of QQ⊤. For the columns between the first and
the last one, we make the arbitrary choice to fix them also to 1/

√
κ. If Q⊤W has

full column rank, which happens with probability one if ν ≥ r, RandSPA is robust to
noise with the following bounds:

Theorem 5.1 [45, Corollary 1] Let X̃ = X+N , where X satisfies Assumption 5.1,
W has full column rank, and N is noise with maxj ∥N(:, j)∥2 ≤ ϵ; and let Q ∈ Rm×ν

with ν ≥ r. If Q⊤W has full column rank and

ϵ ≤ O
(

σmin(W )√
rκ3(Q⊤W )

)
,

then SPA applied on matrix Q⊤X̃ identifies a set of indices J corresponding to the
columns of W up to the error

max
1≤j≤r

min
k∈J

∥∥∥W (:, j)− X̃(:, k)
∥∥∥
2
≤ O

(
ϵκ(W )κ(Q⊤W )3

)
.

Theorem 5.1 is directly applicable to RandSPA since choosing f(x) = x⊤QQ⊤x
is equivalent to performing SPA on Q⊤X̃. The only subtlety is that with RandSPA,
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a random Q is drawn at each column extraction. The error bound for RandSPA is
then the one with the highest drawn κ(Q⊤W ).

Let us note that choosing ν = 1 or ∥Q(:, j)∥ = 1/
√
κ with κ → ∞ for all j > 1

retrieves VCA. Choosing ν = m and κ(Q) = 1 retrieves SPA. Hence, RandSPA
creates a continuum between SPA, with more provable robustness, and VCA, with
more solution diversity.

5.3 Numerical experiments

In this section, we study empirically the performance of the proposed algorithm
RandSPA on the unmixing of hyperspectral images. The algorithms have been im-
plemented in Julia [10]. The code for the algorithm is available as a Julia package in
an online repository1. A different repository with the data and test scripts used in
our experiments is also available2. Our tests are performed on 5 real hyperspectral
datasets3 described in Table 5.1.

Dataset m n r
Jasper 198 100× 100 = 10000 4
Samson 156 95× 95 = 9025 3
Urban 162 307× 307 = 94249 5
Cuprite 188 250× 191 = 47750 12
San Diego 188 400× 400 = 160000 8

Table 5.1: Summary of the datasets, for which X ∈ Rm×n .

For all the tests, we choose ν = r + 1 and a relatively well conditioned Q with
κ(Q) = 1.5. We then compute W = X(:,J ) once with SPA and 30 times with
RandSPA. Next, we compute H by solving the nonnegative least squares (NNLS)
subproblem minH≥0 ∥X −WH∥2F exactly with an active-set algorithm [56], and we
compute the relative reconstruction error ∥X −WH∥F /∥X∥F . For RandSPA, we
show the best error and the median error among the 30 runs. Note that in our setting
we choose the best solution as the one with the lower reconstruction error, but other
methods could be used to choose the best solution among all the computed ones.

The results of the experiments for SPA and RandSPA are presented in Table 5.2.
The median error of RandSPA is on the same order than that of SPA, except for
Cuprite where it is higher. This is probably because r is greater than on other
datasets. A good RandSPA run needs r good successive Q’s, which is less probable
when r gets greater. This highlights that RandSPA could be improved. One possible
improvement would be to draw several matrices Q’s at each iteration and select the
best based on a criterion. The open question is then which criterion, and why. Going
back to the median error of RandSPA, it is even slightly smaller than that of SPA

1https://gitlab.com/vuthanho/randspa.jl
2https://gitlab.com/nnadisic/randspa
3Originally downloaded from http://lesun.weebly.com, available at https://gitlab.com/

vuthanho/data

https://gitlab.com/vuthanho/randspa.jl
https://gitlab.com/nnadisic/randspa
http://lesun.weebly.com
https://gitlab.com/vuthanho/data
https://gitlab.com/vuthanho/data
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for Samson and Urban. On the other hand, the error from the best run of RandSPA
is always smaller than that of SPA. Particularly, the error is decreased respectively
by 37%, 32% and 27% for Samson, Urban and San Diego. This improvement is quite
noticeable.

Dataset SPA Med. RandSPA Best RandSPA
Jasper 8.6869 8.7577 8.0206
Samson 6.4914 6.3114 3.9706
Urban 10.9367 9.6354 6.5402
Cuprite 2.6975 3.526 2.2824
San Diego 12.6845 12.8714 9.2032

Table 5.2: Relative reconstruction error ∥X −WH∥F /∥X∥F in percent.

The resulting false color images for Jasper, Samson, Urban and Cuprite are shown
on Figure 5.1. They represent the repartition of the materials identified by SPA
and RandSPA in the image. As we can see for Urban, SPA does not manage to
separate well the grass and the trees (both the grass and trees are in green), while with
RandSPA, it occurred that some random Q amplified some directions that separate
better the grass (in blue) and the trees (in green). Similarly, in the abundance maps
from the unmixing of Samson in Figure 5.1, RandSPA separates the soil (in red), the
water (in blue) and the trees (in green) better than SPA where the soil (in blue) is
extracted but the water is not clearly identified.

Let us discuss another experiment on the dataset Samson. We add some Gaussian
noise such that SNR = 20dB, we fix κ = 1 and vary ν, and then show the average
best error in 1,5,10 and 20 runs on Figure 5.2. As we can see, with a sufficient amount
of runs that is 10 in this experiment, the relative error significantly improves for a
ν near 10 in comparison to other choices of ν. In particular, it is also better than
both ν = 1 (VCA) and a high ν like 50 that should behave like SPA. Without added
noise, VCA would perform better than every ν higher than 1 starting from 10 runs.
However, when the data is noisy, this experiment highlights that VCA is not robust
enough to noise and that the best run from a method between SPA and VCA is better
than both SPA and VCA.

5.4 Conclusion
In this chapter, we introduced RandSPA, a variant of the separable NMF algorithm
SPA that introduces randomness to allow a multi-start strategy. The robustness
results of SPA still hold for RandSPA, provided a bound on the noise that depends
on the parameters used. We showed empirically on the unmixing of hyperspectral
images that, with sufficiently many runs, the best solution from RandSPA is generally
better that the solution from SPA. We also showed that RandSPA creates a continuum
between the two algorithms SPA and VCA, as we can recover these algorithms by
running RandSPA with some given parameter values.
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Figure 5.1: Abundance maps in false color from the unmixing of hyperspectral images.
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Figure 5.2: Average best reconstruction error on several runs, depending on ν, with
κ = 1, on the hyperspectral image Samson with added noise such that SNR = 20dB.
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Chapter 6

Minimum-Volume Nonnegative
Matrix Factorization

Thom Draft - Breathtaking

The minimum-volume criterion was originally thought by [38] and the so called Craig’s
belief [23]. It also appeared later in the chemometrics community. Up to our knowl-
edge, the first implementation of the minimum-volume criterion coupled with NMF
was proposed in [77]. The idea is that in the absence of pure pixels, given that all
the data points are not strong mixtures, finding endmembers whose cone or convex
hull tightly contains the data points retrieves the true endmembers. If the main mo-
tivation was spectral unmixing, the minimum-volume criterion has also been shown
to be useful in other applications, like blind audio source separation for instance
[65, 106]. Regardless of the application, the minimum-volume criterion encourages
interpretability of the features since they are close to the data points.

Outline and contribution of the chapter In this chapter, we present known
declinations of MinVol NMF in Section 6.1, we quickly recall on the identifiability
of MinVol NMF in Section 6.2, we propose a fast algorithm for MinVol NMF in
Section 6.3 and finally, we show how the MinVol criterion is promising for matrix
completion in Section 6.4.

6.1 Existing variants of MinVol NMF
Geometrically, the NMF X = WH implies that cone(X) ⊆ cone(W ). Distinctively,
with MinVol NMF, the convex hull of W should enclose the convex hull of X as tightly
as possible1, hence the expression “minimum-volume”. In other words, MinVol NMF
consists in finding a couple of factors (W,H) ∈ Rm×r

+ × Rr×n
+ such that X = WH

while minimizing the volume of the convex hull of the columns of W and the origin,
which is given by 1

r!

√
det(W⊤W ). This improves the interpretability of the features

(the columns of W ) while prioritizing a unique decomposition of the data under
1This interpretation only holds with a column-wise simplex-structured H.
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relatively mild assumptions, that are given in Theorem 2.2. Additionally, one of the
factors should be constrained such that the scaling ambiguity between W and H
coupled with the minimized volume does not make W tend to zero at optimality.
Identifiable MinVol NMFs typically use simplex structuring constraints, namely W ∈
∆m×r [65] or H ∈ ∆r×n [37] or H⊤ ∈ ∆n×r [32], where ∆m×r = {Y ∈ Rm×r

+ , e⊤Y =
e⊤} and e is the all-one vector of appropriate dimension. See Section 6.2 for more
details on the identifiability of MinVol NMF. The constraint W ∈ ∆m×r ensures that
the columns of W lie within the probability simplex. The constraint H⊤ ∈ ∆n×r

can be seen as a budget assignment constraint: each feature should be used in the
decomposition as much as the others. Both aforementioned constraints are without
loss of generality relatively to NMF because of the scaling ambiguity between W and
H, that is, any NMF (W,H) can be scaled so that W ∈ ∆m×r or H⊤ ∈ ∆n×r is
satisfied. The constraint H ∈ ∆r×n is stronger than the other two as it is not without

loss of generality relatively to NMF. For example, for the matrix X =

(
1 0 1
0 1 1

)
,

there exists a rank-2 NMF of X which is simply X = IX. However, any exact
NMF of X with the additional constraint that H has to be column wise stochastic
is of rank at least 3. Despite the loss of generality, this constraint remains useful
in practice as it provides a soft clustering interpretation of the decomposition. It
has been instrumental in hyperspectral imaging where each column of H contains
the abundances of the pure materials in a pixel which are nonnegative and sum to
one [72]. The constraint H⊤ ∈ ∆n×r can be responsible for an ill conditioned W that
can lead to numerical issues [65]. Consequently, among the three mentioned variants
of MinVol, we will only consider the following exact formulation in the remainder of
this chapter:

minimize
W,H

det(W⊤W )

subject to X = WH,

W ∈ ∆m×r, H ∈ Rr×n
+ .

(6.1)

Consequently, the inexact formulation is

minimize
W,H

1

2
∥X −WH∥2F +

λ

2
logdet(W⊤W + δI)

subject to W ∈ ∆m×r, H ∈ Rr×n
+ ,

(6.2)

where δ is a parameter that prevents the logdet from going to −∞ when W is rank
deficient, and λ ≥ 0 balances the two terms. Note that the true volume spanned
by the columns of W and the origin is equal to 1

r!

√
det(W⊤W ), but minimizing

logdet(W⊤W ) is equivalent in the exact case and makes the problem numerically
easier to solve because the function logdet(·) is concave and it is easier to design a
“nice” majorizer for it [35].
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6.2 Identifiability of MinVol NMF
The identifiability of MinVol NMF with H ∈ ∆r×n was indirectly mentioned through
the identifiability of MinVol SSMF in Theorem 2.2. The additional nonnegative con-
straint on W does not change this identifiability result. MinVol NMF with H⊤ ∈ ∆n×r

and W ∈ ∆m×r are also identifiable with very similar proofs. Since we only use Min-
Vol NMF with W ∈ ∆m×r, let us remind the proof of its identifiability. The proof
was given in [65] and adapted from [37].

Theorem 6.1 ([65]) Let X = WH be a MinVol NMF of X of size r = rank(X), in
the sense of (6.1). If H satisfies SSC as in Definition 2.8, then MinVol NMF (W,H)
of X is essentially unique.

Proof 6.1 Let Q ∈ Rr×r be an invertible matrix such that (WQ−1, QH) is another
feasible solution of (6.1). Since W⊤e = e and Q−⊤W⊤e = e because (WQ−1, QH)
is feasible, we have

Q−⊤W⊤e = e ⇔ Q−⊤e = e. (6.3)
Multiplying on the left by Q⊤ leads to e = Q⊤e. Using again feasibility of
(WQ−1, QH),

QH ≥ 0 ⇔ H⊤Q⊤ ≥ 0 (6.4)

⇔ Q(i, :)⊤ ∈ cone∗(H) (6.5)

⇔ cone(Q⊤) ⊆ cone∗(H). (6.6)

Since H satisfies SSC1, C ⊆ cone(H). By duality, cone∗(H) ⊆ C∗, where C∗ is given
in Lemma 2.1. With (6.6), this implies that cone(Q⊤) ⊆ C∗. More explicitly,

Q(i, :)e ≥ ∥Q(i, :)∥2 for i = 1, . . . , r. (6.7)

Therefore,

|det(Q)| ≤
r∏

i=1

∥Q(i, :)∥2

≤
r∏

i=1

Q(i, :)e

≤
(∑r

i=1 Q(i, :)e

r

)r

=

(
e⊤Q⊤e

r

)r

= 1,

(6.8)

where the first inequality is coming from the Hadamard’s inequality, the second
from (6.7), and the last one from the arithmetic-geometric mean inequality and that
Q⊤e = e.

Suppose now that (WQ−1, QH) is also an optimal solution to (6.1). Then,

det(Q−⊤W⊤WQ−1) = det(W⊤W ) (6.9)

⇔ |det(Q)|−2 det(W⊤W ) = det(W⊤W ) (6.10)
⇔ |det(Q)| = 1. (6.11)
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With |det(Q)| = 1, all inequalities in (6.8) are equalities. Particularly, for all i,

Q(i, :)e = ∥Q(i, :)∥2 = 1 (6.12)

and |det(Q)| = ∏r
i=1 ∥Q(i, :)∥2, implying that Q⊤ is orthogonal. By duality of (6.6)

and using that the cone of any orthogonal matrix is self dual, we have that cone(H) ⊆
cone(Q⊤). Finally, since H satisfies SSC2, Q⊤ can only be a permutation matrix.

6.3 Solving MinVol NMF with TITAN

As opposed to PCA/SVD, solving NMF is NP-hard in general [97]. Hence, most
NMF algorithms rely on standard non-linear optimization schemes without global
optimality guarantee. This also applies to MinVol NMF. In this section, we propose a
fast method to solve MinVol NMF in Section 6.3.1. Our method is an application of
a recent inertial block majorization-minimization framework called TITAN [51], that
we already used in Chapter 3. Experimental results on real datasets show that the
proposed method performs better than the state of the art; see Section 6.3.2.

6.3.1 TITANized MinVol NMF

As far as we know, all algorithms for MinVol NMF rely on two-block coordinate
descent methods that update each block (W or H) by using some outer optimization
algorithm to solve the subproblems formed by restricting the MinVol NMF problem
to each block. For example, the state-of-the-art method from [63] uses Nesterov fast
gradient method to update each factor matrix, one at a time.

Our proposed algorithm for (6.2) will be based on the TITAN framework from [51].
TITAN is an inertial block majorization minimization framework for nonsmooth non-
convex optimization. It updates one block at a time while fixing the values of the
other blocks, as previous MinVol NMF algorithms. In order to update a block, TITAN
chooses a block surrogate function for the corresponding objective function (a.k.a. a
majorizer), embeds an inertial term to this surrogate function and then minimizes
the obtained inertial surrogate function. When a Lipschitz gradient surrogate is used,
TITAN reduces to the Nesterov-type accelerated gradient descent step for each block
of variables [51, Section 4.2]. The difference of TITAN compared to previous MinVol
NMF algorithms is threefold:

1. The inertial force (also known as the extrapolation, or momentum) is used
between block updates. This is a crucial aspect that will make our proposed
algorithm faster: when we start the update of a block of variables (here, W or
H), we can use the inertial force (using the previous iterate) although the other
blocks have been updated in the meantime.

2. TITAN allows to update the surrogate after each update of W and H, which
was not possible with the algorithm from [63] because it applied fast gradient
from convex optimization on a fixed surrogate.
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3. It has subsequential convergence guarantee, that is, every limit point of the
generated sequence is a stationary point of Problem (6.2). Note that the state-
of-the-art algorithm from [63] does not have convergence guarantees.

Remark. The block prox-linear (BPL) method from [109] can be used to solve (6.2)
since the block functions in W 7→ 1

2∥X −WH∥2F and in H 7→ 1
2∥X −WH∥2F have

Lipschitz continuous gradients. However, BPL applies extrapolation to the Lipschitz
gradient surrogate of these block functions and requires to compute the proximal
point of the regularizer λ

2 logdet(W⊤W + δI), which does not have a closed form.
In contrast, TITAN applies extrapolation to the surrogate function of W 7→ f(W,H)
with a surrogate function for the regularizer λ

2 logdet(W⊤W+δI) (see Section 6.3.1.1).
This allows TITAN to have closed-form solutions for the subproblems, an acceleration
effect, and convergence guarantee.

6.3.1.1 Surrogate functions

An important step of TITAN is to define a surrogate function for each block of vari-
ables. These surrogate functions are upper approximation of the objective function
at the current iterate. Denote

f(W,H) =
1

2
∥X −WH∥2F +

λ

2
logdet(W⊤W + δI)

and suppose we are cyclically updating (W,H). Let us denote uWk
(W ) the surrogate

function of W 7→ f(W,Hk) to update Wk, that is,

f(W,Hk) ≤ uWk
(W ) for all W ∈ XW , (6.13)

where uWk
(Wk) = f(Wk, Hk) and XW is the feasible domain of W . Similarly, let us

denote uHk
(H) the surrogate function of H 7→ f(Wk+1, H) to update Hk, that is

f(Wk+1, H) ≤ uHk
(H) for all H ∈ XH , (6.14)

where uHk
(Hk) = f(Wk+1, Hk) and XH is the feasible domain of H.

Surrogate function and update of W Denote A = W⊤W+δI, Bk = W⊤
k Wk+δI

and Pk = (Bk)
−1. Since logdet is concave, its first-order Taylor expansion around Bk

leads to logdet(A) ≤ logdet(Bk) + ⟨(Bk)
−1, A−Bk⟩. Hence,

f(W,Hk) ≤ f̃Wk
(W ) :=

1

2
∥X −WHk∥2F +

λ

2
⟨Pk,W

⊤W ⟩+ C1, (6.15)

where C1 is a constant independent of W . Note that the gradient of W 7→ f̃Wk
(W ),

being equal to
(WHk −X)H⊤

k + λWPk,
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is Lk
W -Lipschitz continuous with Lk

W = ∥HkH
⊤
k + λPk∥. Hence, from (6.15) and the

descent lemma (see [81, Section 2.1]),

f(W,Hk) ≤ uWk
(W ) := ⟨∇f̃Wk

(Wk),W ⟩+
Lk
W

2
∥W −Wk∥2F + C2, (6.16)

where C2 is a constant depending on Wk. We use the surrogate uWk
(W ) defined

in (6.16) to update Wk. As TITAN recovers Nesterov-type acceleration for the update
of each block of variables [51, Section 4.2], we have the following update for W :

Wk+1 = argmin
W∈XW

⟨∇f̃Wk
(Wk),W ⟩+

Lk
W

2
∥W −Wk∥2F ,

=

[
Wk +

(X −WkHk)H
⊤
k − λWkP

Lk
W

]

∆m×r

,

(6.17)

where [.]∆m×r performs column wise projections onto the unit simplex as in [21] in
order to satisfy the constraint on W in (6.2), and where Wk is an extrapolated point,
that is, the current point Wk plus some momentum,

Wk = Wk + βk
W (Wk −Wk−1), (6.18)

where the extrapolation parameter βk
W is chosen as follows

βk
W = min


 αk − 1

αk+1
, 0.9999

√
Lk−1
W

Lk
W


 , (6.19)

α0 = 1, αk = (1 +
√
1 + 4α2

k−1)/2. This choice of parameter satisfies the conditions
to have a subsequential convergence of TITAN, see Section 6.3.1.3.

Surrogate function and update of H Since

∇Hf(Wk+1, H) = W⊤
k+1(Wk+1H −X),

the gradient of f according to H is Lk
H -Lipschitz continuous with Lk

H = ∥W⊤
k+1Wk+1∥.

Hence, we use the following Lipschitz gradient surrogate to update Hk:

uHk
(H) = ⟨∇Hf(Wk+1, Hk), H⟩+

Lk
H

2
∥H −Hk∥2F + C3, (6.20)

where C3 is a constant depending on Hk. We derive our update rule for H by mini-
mizing the surrogate function from Equation (6.20) embedded with extrapolation,

Hk+1 = argmin
H∈XH

⟨∇Hf(Wk+1, Hk), H⟩+
Lk
H

2
∥H −Hk∥2F ,

=

[
Hk +

1

Lk
H

W⊤
k+1(X −Wk+1Hk)

]

+

,

(6.21)
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where [ . ]+ denotes the projector setting all negative values to zero, and Hk is the
extrapolated Hk:

Hk = Hk + βk
H(Hk −Hk−1), (6.22)

where, as for the update of W ,

βk
H = min


 αk − 1

αk+1
, 0.9999

√
Lk−1
H

Lk
H


 . (6.23)

6.3.1.2 Algorithm

Note that the update of W in (6.17) and H in (6.21) was described when the cyclic
update rule is applied. Since TITAN also allows the essentially cyclic rule [51, Section
5], we can update W several times before switching updating H, and vice versa. Doing
so allows to pre-compute some matrix operations before updating the factors. For
instance, XH⊤ can be computed before updating W . The result can then be used
several times during the update, which will save some computation time. Note that
this pre-computing trick only works when there are no missing entries, due to the
Hadamard product with M . This leads to our proposed method TITANized MinVol,
see Algorithm 6.1 for the pseudocode. The stopping criteria in lines 3 and 13 are
the same as in [63]. The way λ and δ are computed is also identical to [63]. Let us
mention that technically the main difference with [63] resides in how the extrapolation
is embedded. In [63] the Nesterov sequence is restarted and evolves in each inner
loop to solve each subproblem corresponding to each block. In our algorithm, the
extrapolation parameter βW (and βH) for updating each block W (and H) is updated
continuously without restarting. It means we are accelerating the global convergence
of the sequences rather than trying to accelerate the convergence for the subproblems.
Moreover, TITAN allows to update the surrogate function at each step, while the
algorithm from [63] can only update it before each subproblem is solved, as it relies
on Nesterov’s acceleration for convex optimization.

6.3.1.3 Convergence guarantee

In order to have a convergence guarantee, TITAN requires the update of each block to
satisfy the nearly sufficiently decreasing property (NSDP), see [51, Section 2]. By [51,
Section 4.2.1], the update for H of TITANized MinVol satisfies the NSDP condition
since it uses a Lipschitz gradient surrogate for H 7→ f(W,H) combined with the
Nesterov-type extrapolation; and the bounds of the extrapolation parameters in the
update of H are derived similarly as in [51, Section 6.1]. However, it is important
noting that the update for W of TITANized MinVol does not directly use a Lipschitz
gradient surrogate for W 7→ f(W,H). We thus need to verify NSDP condition for the
update of W by another method that is presented in the following.

The function uWk
(W ) is a Lipschitz gradient surrogate of f̃Wk

(W ), and we apply
the Nesterov-type extrapolation to obtain the update in (6.17). Note that the feasible
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Algorithm 6.1: TITANized MinVol
Input: W0, H0, λ, δ

1 α1 = 1, α2 = 1, Wold = W0, Hold = H0, L
prev
H = ∥W⊤

0 W0∥,
Lprev
W = ∥H0H

⊤
0 + λ(W⊤

0 W0 + δI)−1∥
Output: W,H

2 while stopping criteria not satisfied do
3 while stopping criteria not satisfied do
4 α0 = α1, α1 = (1 +

√
1 + 4α2

0)/2

5 P ← (W⊤W + δI)−1

6 LW ← ∥HH⊤ + λP∥
7 βW = min

(
(α0 − 1)/α1, 0.9999

√
Lprev
W /LW

)

8 W ←W + βW (W −Wold)
9 Wold ←W

10 W ←
[
W + (XH⊤−W (HH⊤+λP ))

LW

]
∆m×r

11 Lprev
W ← LW

12 LH ← ∥W⊤W∥
13 while stopping criteria not satisfied do
14 α0 = α2, α2 = (1 +

√
1 + 4α2

0)/2

15 βH = min
(
(α0 − 1)/α2, 0.9999

√
Lprev
H /LH

)

16 H ← H + βH(H −Hold)
17 Hold ← H

18 H ←
[
H + W⊤(X−WH)

LH

]
+

19 Lprev
H ← LH
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set of W is convex. Hence, it follows from [51, Remark 4.1] that

f̃Wk
(Wk) +

Lk
W (βk

W )2

2
∥Wk −Wk−1∥2F ≥ f̃Wk

(Wk+1) +
Lk
W

2
∥Wk+1 −Wk∥2F . (6.24)

Furthermore, we note that f̃Wk
(Wk) = f(Wk, Hk), and f̃Wk

(Wk+1) ≥ f(Wk+1, Hk).
Therefore, from (6.24) we have

f(Wk, Hk)+
Lk
W (βk

W )2

2
∥Wk−Wk−1∥2F ≥ f(Wk+1, Hk)+

Lk
W

2
∥Wk+1−Wk∥2F , (6.25)

which is the required NSDP condition of TITAN. Consequently, the choice of βk
W

in (6.19) satisfy the required condition to guarantee subsequential convergence [51,
Proposition 3.1].

On the other hand, we note that the error function W 7→ err1(W ) := uWk
(W )−

f(W,Hk) is continuously differentiable and ∇W err1(Wk) = 0; similarly for the error
function H 7→ err2(H) := uHk

(H)− f(Wk+1, H). Hence, it follows from [51, Lemma
2.3] that the Assumption 2.2 in [51] is satisfied. Applying [51, Theorem 3.2], we
conclude that every limit point of the generated sequence is a stationary point of
Problem (6.2). It is worth noting that as TITANized MinVol does not apply restarting
step, [51, Theorem 3.5] for a global convergence is not applicable.

6.3.2 Numerical Experiments
In this section we compare TITANized MinVol to [63], an accelerated version of the
method from [36] (for p = 2), on two NMF applications: hyperspectral unmixing
and document clustering, which are dense and sparse datasets, respectively. All tests
are performed on MATLAB R2018a, on a PC with an Intel® Core™ i7 6700HQ and
24 GB RAM. The code is available on an online repository2.

The datasets used are shown in Table 6.1. For each data set, each algorithm is
launched with the same random initializations, for the same amount of wall-clock time.
In order to derive some statistics, for both hyperspectral unmixing and document
clustering, 20 random initializations are used (each entry of W and H are drawn
from the uniform distribution in [0,1]). The wall-clock time used for each data set is
adjusted manually, and corresponds to the maximum displayed value on the respective
time axes in Figure 6.1; see also Table 6.2.

For display purposes, for each data set, we compare the average of the scaled
objective functions according to time, that is, the average of (f(W,H)− emin)/∥X∥F
where emin is the minimum obtained error among the 20 different runs and among
both methods. The results are presented in Figure 6.1. On both hyperspectral and
document datasets, TITANized MinVol converges on average faster than [63] except
for the San Diego data set (although TITANized MinVol converges initially faster).
For most tested datasets, MinVol [63] cannot reach the same error as TITANized
MinVol within the allocated time.

2https://gitlab.com/vuthanho/titanized-minvol

https://gitlab.com/vuthanho/titanized-minvol
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Figure 6.1: Evolution w.r.t. time of the average of (f(W,H) − emin)/∥X∥F for the
different datasets.
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Data set m n r
Urban 162 94249 6
Indian Pine 200 21025 16
Pavia Univ. 103 207400 9
San Diego 158 160000 7
Terrain 166 153500 5
20 News 61188 7505 20
Sports 14870 8580 7
Reviews 18483 4069 5

Table 6.1: Datasets used in our experiments and their respective dimensions

Data set Our method’s wall-clock time Saved
lead time (s) for [63] wall-clock time

Urban 44 60 73%
Indian Pines 25 30 83%
Pavia Univ. 68 90 76%
San Diego NaN 120 0%
Terrain 44 60 73%
20News 221 300 74%
Reviews 26 30 80%
Sports 15 30 50%

Table 6.2: TITANized MinVol’s lead time over MinVol [63] to obtain the same mini-
mum error.

Algorithm ranking
Hyperspectral unmixing Document clustering

TITANized MinVol (94, 6) (55, 5)
MinVol [63] (6, 94) (5, 55)

Table 6.3: Ranking among the different runs depending on the algorithm and the
kind of data set

The ranking among all the tests has been reported in Table 6.3, where the i-th
entry denotes how many times the corresponding algorithm was in the i-th place. We
also reported in Table 6.2 TITANized MinVol’s lead time over [63] when the latter
reaches its minimum error after the maximum allotted wall-clock time. The lead time
is the time saved by TITANized MinVol to achieve the error of the method from [63]
using the maximum allotted wall-clock time. On average, TITANized MinVol is twice
faster than [63], with an average gain of wall-clock time above 50%.

To summarize, our experimental results show that TITANized MinVol has a faster
convergence speed and smaller final solutions than [63].
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6.4 Minimum-volume Nonnegative Matrix Comple-
tion

Given a data matrix X ∈ Rm×n, there exist many scenarios where only a few entries
of X are observed, e.g., in recommender systems illustrated by the famous Netflix
problem [57]. Recovering these missing entries is often tackled by assuming that
the fully observed data follow a certain structure. If the structuring assumption
is meaningful, by fitting a model that follows the same structure on the observed
entries, it is possible to recover the missing entries; see, e.g., [15, 16, 47]. The low-
rank assumption is meaningful in many scenarios [94]. If X ∈ Rm×n is low-rank, we
can express it as the product of two smaller matrices, W ∈ Rm×r and H ∈ Rr×n, as
X = WH where r ≪ min(m,n). Let us denote Ω ⊆ {1, . . . ,m} × {1, . . . , n} the set
containing the indices of the observed entries in X. If the rank of X is equal to r,
we can look for W ∈ Rm×r and H ∈ Rr×n such that X(i, j) = W (i, :)H(:, j) for all
(i, j) ∈ Ω. Then, for every missing entry at (i, j) ∈ Ω, X(i, j) can be estimated by
computing W (i, :)H(:, j). If X is noisy and does not follow the low-rank assumption,
it might still be relevant to approximate it through a low-rank structure, because
low-rank matrix approximations can identify patterns in the data via the extraction
of common features among data points.

When the rank is unknown, a common tractable strategy is to minimize the nuclear
norm, that is the sum of the singular values, of the estimation X̃ of X:

min
X̃
∥X̃∥∗ such that PΩ(X̃) = PΩ(X),

where PΩ(Y ) sets Y (i, j) to zero if (i, j) /∈ Ω, or does not change it otherwise.

In this section, we consider the rank to be known, and our goal is not only to
recover the missing entries in X, but also to recover the unique matrices W and H
that generated the data X = WH. This could be useful in hyperspectral unmixing
with missing data for instance, where the columns of W are expected to be the spectral
signatures of the underlying materials, and where the j-th column of H contains the
abundance in the j-th pixel of each extracted material. In this scenario, it is of course
preferable to recover a unique set (W,H). To perform this task, it is possible to first
use a data completion algorithm, and then use a constrained matrix factorization
algorithm to estimate the sought factors W and H. Here, we focus on performing
both tasks together, since estimating correctly W and H on Ω implies a correct
recovery of the missing entries in X = WH. We assume that the data and the factors
are nonnegative, that is, X ≥ 0, W ≥ 0 and H ≥ 0, where ≥ is applied element
wise. Hence, our goal is to perform NMF with missing data while recovering a unique
decomposition. To do so, MinVol NMF is a relevant option, and its performances on
matrix completion have never been explored before. In this chapter, we show that
when correctly tuned, MinVol NMF performs well on the matrix completion task and
is also able to retrieve the true underlying factors using only a few observed entries.
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6.4.1 Motivation
In this section, we justify the choice of the minimum-volume criterion for the task
of nonnegative matrix completion. Matrix completion in general has been well stud-
ied, especially by the compressed sensing community [15]. Among the techniques to
perform matrix completion, the low-rank approach often arises, because the low-rank
structure has been observed to be quite powerful in this setting, as it is able to iden-
tify hidden (linear) features in data. However, minimizing the rank of the estimation
matrix while guaranteeing the equality constraints on the set of observed entries is
NP-hard in general. A good convex relaxation that promotes low-rank structures is
the nuclear norm minimization; see [85]. This is coming from the fact that the rank
is the ℓ0 norm of the vector of the singular values, while the nuclear norm is the ℓ1
norm of this vector. Still, this requires to store the whole estimation X̃ of X, and
it also becomes harder to impose additional structuring constraints. When the rank
is known, we can fully exploit the low-rank structure by working with the low-rank
factors W and H instead. It is then easier to add some structuring constraints on W
and H. Also, this allows one to deal with larger problems. Since

∥X∥∗ = min
X=WH

1

2

(
∥W∥2F + ∥H∥2F

)
,

a good alternative to the nuclear norm regularization is then the regularizer
1
2

(
∥W∥2F + ∥H∥2F

)
[90]. If the rank is unknown, an overestimated rank coupled with

a proper penalization of 1
2

(
∥W∥2F + ∥H∥2F

)
can yield state-of-the-art results. For

example, in [87], a properly tuned matrix factorization model using the above reg-
ularizer can outperform deep neural networks on recommendation systems. In [69],
they showed that the sightly different regularizer ∥W∥∗ + 1

2∥H∥2F yields better re-
sults than 1

2

(
∥W∥2F + ∥H∥2F

)
, both with uniform or non-uniform samplings. Go-

ing back to our point of interest, it is interesting to observe that the MinVol reg-
ularizer provides more adaptability as a (non-convex) relaxation of the rank [64],
since logdet(W⊤W + δI) =

∑
i log(σ

2
i (W ) + δ). As it can be seen in Fig. 6.2,

logdet(W⊤W + δI) approximates a range of behaviors between the ℓ0 and the ℓ1
norms. In particular, as δ goes to zero, logdet(W⊤W + δI) converges to the ℓ0 norm
of the vector of singular values of X, up to a constant factor. Hence the MinVol
criterion logdet(W⊤W + δI) is clearly a good candidate as a regularizer for NMC.

Let us now propose two models to tackle NMC. The first one is to adapt (6.2) to
the NMC problem, which yields

minimize
W,H

1

2
∥PΩ(X −WH)∥2F +

λ

2
logdet(W⊤W + δI)

subject to W ∈ ∆m×r, H ∈ Rr×n
+ .

(6.26)

Theorem 6.1 does not extend to the case where some values are missing. If the matrix
completion is not unique, then it is impossible to guarantee a unique recovery of the
matrices W and H. Hence, a trivial way to adapt Theorem 6.1 to missing values is
to add the condition that matrix completion under MinVol NMF should be unique.
However, better conditions than standard low-rank matrix completion theory under
which solving (6.26) recovers a unique completion are, up to now, unknown.
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Figure 6.2: Function fδ(x) =
ln(x2+δ)−ln(δ)
ln(1+δ)−ln(δ) for various values of δ, along the ℓ0 and

ℓ1 norm.

The second one introduces a new variant of MinVol NMF which is not simplex
structured. Inspired by the regularizer ∥W∥∗ + 1

2∥H∥2F and motivated by the link
between the behavior of the nuclear norm and the MinVol criterion, here we consider
logdet(W⊤W +δI)+∥H∥2F as a regularizer. The resulting new MinVol NMF adapted
for NMC is

minimize
W,H

1

2
∥PΩ(X−WH)∥2F +

λ

2
logdet(W⊤W+δI) +

γ

2
∥H∥2F

subject to W ∈ Rm×r
+ , H ∈ Rr×n

+ ,

(6.27)

where λ ≥ 0 and γ ≥ 0 balance the regularizers. Note that neither W nor H is
simplex structured. The scaling ambiguity coupled with the volume penalization is
counter balanced by the penalization of ∥H∥2F . In fact, in the exact case and when
δ = 0, every row of H has the same norm at optimality. Consider a feasible (W,H)
for (6.27) such that X = WH and let f(D) = λ

2 logdet(D−1W⊤WD−1) + γ
2 ∥DH∥2F

where D = Diag(d1, . . . , dr) is a positive diagonal matrix that can be seen as the
scaling ambiguity between W and H. Nullifying the gradient of f relatively to each
di, we have that d2i = λ

γ∥H(i,:)∥2
F

, meaning that at optimality ∥H(i, :)∥2F = λ
γ for all i.

6.4.2 Algorithms
In Section 6.4.3, we compare NMF, MinVol (6.26) and new MinVol (6.27). For a fair
comparison, these models are fit with the same algorithmic scheme, adapted from [98],
which is an extrapolated alternating block majorization-minimization method already
described in Section 6.3. Our adaptation is described in Algorithm 6.2, where P∆m×r

(respectively PRm×r
+

) projects a matrix of size m× r onto ∆m×r (respectively Rm×r
+ ).

See [22] for the details on the projection onto ∆m×r. Essentially, the updates for W
and H are several projected gradient descent steps, performed with a step size equal
to the inverse of the Lipschitz constant. The updates for each model and each factor,
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as well as the corresponding Lipschitz constant, are given in Table 6.4 and Table 6.5.
The used Lipschitz constants are deliberately not tight. Consider the MinVol NMF
update of H for instance. Let M ∈ {0, 1}m×n be such that M(i, j) = 1 if (i, j) ∈ Ω,
M(i, j) = 0 otherwise. A tighter Lipschitz constant is maxj

∥∥W⊤ Diag(M(:, j))W
∥∥;

see the paragraph in Section 3.2.1 on the choice of Lipschitz constant for the details.
We deliberately keep ∥W⊤W∥ as it is less costly to compute and the additional cost
might not be worth it. Moreover, if at least one column of X is fully observed, then
maxj

∥∥W⊤ Diag(M(:, j))W
∥∥ = ∥W⊤W∥ = ∥W∥2.

Algorithm 6.2: Main algorithm scheme
input: data matrix X ∈ Rm×n, initial factors W ∈ Rm×r

+ and H ∈ Rr×n
+

1 α1 = α2 = 1, Wo = W, Ho = H
2 while stopping criteria not satisfied do
3 while stopping criteria not satisfied do
4 α0 = α1, α1 = 1

2 (1 +
√
1 + 4α2

0)

5 W = W + α0−1
α1

(W −Wo)

6 Wo = W
7 Update W according to Table 6.4

8 while stopping criteria not satisfied do
9 α0 = α2, α2 = 1

2 (1 +
√
1 + 4α2

0)

10 H = H + α0−1
α2

(H −Ho)

11 Ho = H
12 Update H according to Table 6.5

Update

MinVol P∆m×r

(
W − 1

L∇W

)

new MinVol / NMF (with λ = 0) PRm×r
+

(
W − 1

L∇W

)

Table 6.4: Updates for W according to the model, where P = (W⊤W + δI)−1,
L = ∥HH⊤ + λP∥ and ∇W = PΩ

(
WH −X

)
H⊤ + λWP .

6.4.3 Experiments
The goal of this section is to highlight the performance of the MinVol criterion for
NMC. All experiments are run with Julia on a PC with an Intel(R) Core(TM) i7-
9750H CPU @ 2.60GHz and 16GB RAM. All displayed measurements are averaged
out of 20 runs. The code is available at https://gitlab.com/vuthanho/minvol-nmc.
The compared models are NMF (to provide a baseline of a non-regularized model),

https://gitlab.com/vuthanho/minvol-nmc
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L Update

MinVol / NMF ∥W⊤W∥ PRr×n
+

(
H − 1

L∇H

)

new MinVol ∥W⊤W + γI∥ PRr×n
+

(
L−γ
L H − 1

L∇H

)

Table 6.5: Updates for H according to the model, where ∇H = W⊤PΩ

(
WH −X

)
.

MinVol (6.26), and the new proposed MinVol (6.27). For all models, the stopping
criteria of the while loop in line 2 is just a number of outer iterations equal to 50,
and the stopping criteria of the two while loops in lines 3 and 8 is a number of
inner iterations equal to 20. All models are also initialized with the same warm start
(W0, H0), which is the output of 500 iterations of NMF where the columns of W
are simplex-structured. In this setting, all methods converge. For both MinVols,
λ is first set to max(∥PΩ(X−W0H0)∥2

F ,10−6)

| logdet(W⊤
0 W0+δI)| . For the new proposed MinVol, γ is first

set to 0.01
max(∥PΩ(X−W0H0)∥2

F ,10−6)

∥H0∥2
F

. On the hyperparameters λ and γ, we adapt the
automatic tuning method developed in [82]. The automatic tuning does not introduce
a significant additional cost and is triggered when the difference between the current
and the last objective values divided by ∥PΩ(X)∥2F is less than 10−3.

First experiment: noiseless synthetic data The first experiment focuses on
both data completion and recovery of the exact generating factors in a noiseless case.
For this experiment, for a given rank r, we randomly generate two factors (W,H) =
[0, 1]200×r × [0, 1]r×200 following a uniform distribution. Then, 80% random values
of H are set to zeros. This is a reasonable assumption in real scenarios such as
hyperspectral unmixing. For the explored range of ranks, this will provide almost
surely a sufficiently scattered H. Then, we generate the full data matrix X simply by
computing WH. The average of the elements of X is always set to 1, dividing X by
its average. Finally, we create the observed data X̃ by removing a certain percentage
of the entries in X. We vary the rank from 5 to 10, and the percentage of missing
values from 80% to 90%. We report the root-mean-squared error (RMSE) of the
missing values according to Definition 6.1 and the maximum subspace angle between
the factor W that took part in generating the data X and its estimation W̃ according
to Definition 6.2.

Definition 6.1 (RMSE) The RMSE on the unobserved set Ω is defined as follows

RMSE(X̃,WH) =

√
1

|Ω| ∥PΩ(X̃ −WH)∥2F .

Definition 6.2 (Subspace angle [11, 107]) Let USV and Ũ S̃Ṽ respectively be the
singular value decomposition of W and W̃ . Then the angle between the two subspaces
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specified by the columns of W and W̃ is defined as follows

Angle(W, W̃ ) = arcsin(min(1, ∥Ũ − UU⊤Ũ∥2)).
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Figure 6.3: Average RMSE according to the rank r and to the percentage of missing
values over 20 runs.

The RMSEs are reported in Fig. 6.3 and the subspace angles in Fig. 6.4. MinVol
NMF coupled with the proposed auto-tuning proposed in [82] clearly outperforms the
vanilla MinVol NMF with a fixed λ. The auto-tuned MinVol NMF is itself outper-
formed by our new proposed variant of MinVol NMF. For 90% missing values and a
rank equal to 10 for instance, the average RMSE of the auto-tuned Minvol is 0.52
while it is 0.41 for the new MinVol.

Second experiment: noisy synthetic data We keep the same settings as in the
first experiment, while fixing the rank to 10, and adding some uniformly distributed
noise. The noise level corresponds to the RMSE between the clean data and the noisy
data. We vary the noise level from 0 to 1 and the percentage of missing values from
80% to 90%. We report the RMSE in Fig. 6.5. It is not necessary to report the
subspace angle since it is degrading too fast. Perfect matrix completion is a necessary
condition to retrieve a low subspace angle, which is already not possible starting from
a noise level equal to 0.2. Results in Fig. 6.5 show that our proposed variant of
MinVol NMF is more consistent relatively to the percentage of missing values and
more precise than vanilla MinVol NMF in the presence of noise.
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Figure 6.4: Average angle according to the rank r and to the percentage of missing
values over 20 runs.

(a) NMF

80 82 84 86 88 90
missing values (%)

0
0.2
0.4
0.6
0.8
1

no
is

e
le

ve
l

0

0.5

≥1
(b) MinVol

80 82 84 86 88 90
missing values (%)

0
0.2
0.4
0.6
0.8
1

no
is

e
le

ve
l

0

0.5

≥1

(c) auto MinVol

80 82 84 86 88 90
missing values (%)

0
0.2
0.4
0.6
0.8
1

no
is

e
le

ve
l

0

0.5

≥1
(d) new MinVol

80 82 84 86 88 90
missing values (%)

0
0.2
0.4
0.6
0.8
1

no
is

e
le

ve
l

0

0.5

≥1

Figure 6.5: Average RMSE according to the noise level and to the percentage of
missing values over 20 runs.
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6.5 Identifiability of MinVol NMF with ℓ1 penalty
In the previous section, we studied the model

minimize
W,H

1

2
logdet(W⊤W ) +

1

2
∥H∥2F

subject to X = WH,

W ∈ Rm×r
+ , H ∈ Rr×n

+

(6.28)

for missing data. Additionally, we mentioned that the identifiability of (6.28) remains
unknown with conditions milder than Theorem 2.1. For the sake of completion, let
us mention in this section that the model

minimize
W,H

1

2
logdet(W⊤W ) + ∥H∥1

subject to X = WH,

W ∈ Rm×r
+ , H ∈ Rr×n

+

(6.29)

is just as identifiable as vanilla MinVol NMF.

Theorem 6.2 Let X = WH be an ℓ1-MinVol NMF of X of size r = rank(X), in the
sense of (6.29). If H satisfies SSC as in Definition 2.8, then ℓ1-MinVol NMF (W,H)
of X is essentially unique.

This follows from two key points:

• Consider a feasible (W,H) for (6.29) such that X = WH and let
f(D) = 1

2 logdet(D
−1W⊤WD−1) + ∥DH∥1 where D = Diag(d1, . . . , dr) is a

positive diagonal matrix that can be seen as the scaling ambiguity between
W and H. Nullifying the gradient of f relatively to each di, we have that
di =

1
∥H(i,:)∥1

, meaning that at optimality ∥H(i, :)∥1 = 1 for all i, since di = 1

at optimality (otherwise one can improve the solution by scaling, which would
therefore not be globally optimal). Or more compactly, He = e.

• If H is SSC, MinVol NMF with He = e is identifiable [32].

6.6 Conclusion
In this chapter, we developed a new algorithm to solve MinVol NMF based on the
inertial block majorization-minimization framework of [51]. This framework, under
some conditions that hold for our method, guarantees subsequential convergence.
Experimental results show that this acceleration strategy performs better than the
state-of-the-art accelerated MinVol NMF algorithm from [63]. Then, we argued on
the favor of using more the MinVol criterion in the domain of matrix completion,
which has never been explored before. Not only the MinVol criterion can emulate a
broad of behaviors going from the rank minimization to the nuclear minimization,
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but it also acts in favor of recovering the unique decomposition of a low-rank matrix
if it exists. This paper also introduced a new variant of MinVol NMF which is not
simplex-structured. Experiments show that a properly tuned MinVol NMF provides
encouraging results, both on the task of matrix completion and unique factors recov-
ery. Last but not least, experiments show that our new proposed variant of MinVol
NMF outperforms vanilla MinVol NMF. Future work should focus on the potential
identifiability of this new variant and on comparing with other matrix completion
algorithms.



Chapter 7

Maximum-Volume Nonnegative
Matrix Factorization

Hélène Vogelsinger - Reminiscence

In this chapter, we present a new volume regularized NMF, dubbed MaxVol NMF
for Maximum-Volume Nonnegative Matrix Factorization. Compare to MinVol NMF,
MaxVol NMF maximizes the volume of H instead of minimizing the volume of W . To
the best of our knowledge, MaxVol MF (without nonnegativity) has only been briefly
discussed in [92] as the sparse nonnegative case of their framework. Its behavior on
HU has not been explored, and their proposed algorithm is in fact using an algorithm
designed to solve MinVol MF coming from [35]. However, we will see that in the
inexact case MinVol NMF and MaxVol NMF behaves differently. In particular MaxVol
NMF is much more effective to extract sparse factors and does not generate rank-
deficient solutions; see below for more details.

Outline and contribution of the chapter In Section 7.1 and Section 7.2, we
motivate, introduce and analyze MaxVol NMF. In Section 7.3, we propose two al-
gorithms to solve MaxVol NMF. In Section 7.4, we present a normalized variant of
MaxVol NMF that exhibits better performance than MinVol NMF and MaxVol NMF
in the context of HU. Finally, we conclude and discuss future works in Section 7.7.

7.1 Motivation

In the previous chapter, we highlighted the strengths of MinVol NMF. Let us also
highlight two of its main weaknesses in the context of Hyperspectral Unmixing. In
the remaining of this chapter, the MinVol NMF we are referring to is the one where
the simplex structure is imposed on the columns of H, that is, H ∈ ∆r×n.

First, the MinVol criterion introduces a bias that can reduce the quality of the un-
mixing. Let us illustrate this with the Samson dataset. The three main endmembers
present in Samson are water, soil and tree. Due to the spectral signature of water
having a low magnitude relatively to the spectral signature of soil and tree, a bad
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λ 0 (NMF) 1 5 10 50 1 with autotuning
l2 norm of water 0.73 0.35 0.36 0.35 0.29 0.31
l0 norm of water 152 132 130 128 120 123

Table 7.1: l2 and l0 of the spectral signature of the water retrieved by MinVol for the
Samson dataset, which is of size 156× 9025.

estimation of the water spectral signature does not increase significantly the recon-
struction error. Consider the MinVol penalty on top of that, decreasing the norm of
the spectral signature of water is an easy way to decrease to volume of W , and it
can be done at a very small “reconstruction price”. This can be seen on Figure 7.1b,
where the spectral signature of water (in red) for MinVol NMF with λ = 1 contains
156 − 132 = 24 zeros (reported in Table 7.1), while there should not be any zeros
because there is not a wavelength at which water absorbs completely electromagnetic
energy. Here, increasing λ will only worsen this behavior, as it can be seen with
λ = 50 on Figure 7.1 and with the l0 norms reported in Table 7.1.

Second, the sparsity of the decomposition is implicit and depends on the quality
of the data. In the presence of noise, at some point, increasing the weight λ of the
volume criterion will not particularly increase the sparsity of H and improve the
decomposition. See Figure 7.1. With λ increasing, the corresponding abundance
map gets a little bit crispier. Still, the improvement in terms of sparsity is not that
significant, and at the price of a worse spectral signature for the water. Now consider
some data of better quality, like the Moffett dataset for instance. We can see on
Figure 7.2 that the abundance map for NMF is not perfect, but it is already a better
decomposition than what NMF could provide for Samson on Figure 7.1. Adding
the MinVol criterion with λ = 1 improves the decomposition and, as a consequence,
the sparsity. Still, the water and tree extraction are not right, as there are some
detected water within the lands where it should in fact be trees. Increasing λ to 10
slightly improves this, but the wrong water artifacts are still here. Then, increasing
again λ does not improve the unmixing. With λ = 50, one of the columns of W just
collapses to zero. If a practitioner has some a priori knowledge on the sparsity of
the decomposition, MinVol NMF cannot explicitly control sparsity, though sparsity is
often desired in unmixing.

In this chapter, we will see how MaxVol NMF preserves the spirit of MinVol NMF
without the aforementioned weaknesses.
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(a) NMF
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Figure 7.1: Abundance maps and normalized endmembers (from the left to the right:
water, soil and tree) for MinVol on the Samson dataset with δ = 1.
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(a) NMF
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(d) λ = 50
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Figure 7.2: Abundance maps and normalized endmembers (from the left to the right:
water, tree and soil, except for λ = 50) for MinVol on the Moffett dataset with δ = 0.1.
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7.2 MaxVol NMF
Let us introduce MaxVol NMF through its equivalence with MinVol NMF in the exact
case. Consider the full rank SSNMF X = WH. For any full column rank matrix W
of the same size as W , there exists an invertible matrix Q such that W = WQ. Then,

det(W⊤W ) = det(Q⊤W⊤WQ) = det(Q)2 det(W⊤W ).

Minimizing det(W⊤W ) is equivalent to minimizing det(Q)2 det(W⊤W ) relatively to
Q. Hence, computing the exact MinVol NMF of X is equivalent to solving

min
Q

det(Q)2

s.t. WQ ≥ 0, Q−1H ∈ ∆r×n.
(7.1)

An obvious MinVol NMF of X is then (WQ,Q−1H). Minimizing the quantity det(Q)2

is equivalent to maximizing the quantity det(Q−2). To sum up, in the exact case,
minimizing the volume of W is equivalent to maximizing the volume of H. Here is
the exact MaxVol NMF formulation:

max
W,H

det(HH⊤)

s.t. X = WH,

W ≥ 0, H ∈ ∆r×n.

(7.2)

7.2.1 Identifiability of MaxVol NMF
MaxVol NMF is just as identifiable as MinVol NMF. Actually, the proof is almost
exactly the same as the one for MinVol NMF.

Theorem 7.1 Let X = WH be a MaxVol NMF of X of size r = rank(X), in the
sense of (7.2). If H satisfies SSC as in Definition 2.8, then MaxVol NMF (W,H) of
X is essentially unique.

Proof 7.1 Let Q ∈ Rr×r be an invertible matrix such that (WQ−1, QH) is another
feasible solution of (7.2). There exists a right inverse H† such that HH† = I because
rank(H) = r. Since e⊤H = e⊤ and e⊤QH = e⊤ because (WQ−1, QH) is feasible, we
have

e⊤Q = e⊤QHH† = e⊤H† = e⊤HH† = e⊤. (7.3)

For the same reasons as in the proof of Theorem 6.1, that is, from (6.4) to (6.7), we
have

|det(Q)| ≤
r∏

i=1

∥Q(i, :)∥2

≤
r∏

i=1

Q(i, :)e

≤
(∑r

i=1 Q(i, :)e

r

)r

=

(
e⊤Qe

r

)r

= 1,

(7.4)
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where the first inequality is coming from the Hadamard’s inequality, the second
from (6.7), and the last one from the arithmetic-geometric mean inequality and that
e⊤Q = e⊤.

Suppose now that (WQ−1, QH) is also an optimal solution to (7.2). Then,

det(QHH⊤Q⊤) = det(HH⊤) (7.5)

⇔ |det(Q)|2 det(HH⊤) = det(HH⊤) (7.6)
⇔ |det(Q)| = 1. (7.7)

The remainder of the proof is exactly like in Theorem 6.1.

7.2.2 Behavior of MaxVol NMF
In the inexact case, we consider the following MaxVol NMF formulation:

min
W,H

f(W,H) :=
1

2
∥X −WH∥2F − λ logdet(HH⊤ + δI)

s.t. W ≥ 0, H ∈ ∆r×n.

(7.8)

It should be noted that, unlike MinVol NMF, from an optimization perspective,
the δ term in the logdet is not needed anymore. Maximizing the logdet will prevent
H from being rank deficient. Still, we keep δ in our model as it has some physical
meaning. This is discussed in Section 7.4.

To understand the main difference between MinVol NMF and MaxVol NMF, con-
sider the asymptotic case when λ goes to infinity. For MinVol NMF, W will just
converge to 0. For MaxVol NMF, H will converge to a matrix whose rows are mutu-
ally orthogonal and such that the l2 norm of each row are as close to each other as
possible. Let us justify this intuition by considering the problem

minimize
X ∈ Sr

f0(X) = log detX−1

subject to e⊤Xe ≤ a,

X ≥ 0,

(7.9)

where a > 0 and dom f0 = Sr++. We want to prove that X = a
r I is the unique

minimizer of (7.9). We solve this problem through its dual using the conjugate of f0,
like in [13, Section 5.1.6].

Definition 7.1 The conjugate f∗ of a function f : Rr → R is given by

f∗(y) = sup
x∈dom f

(
y⊤x− f(x)

)
.

Considering the optimization problem with linear inequality and equality constraints

minimize f0(x)

subject to Ax ≤ b,

Cx = d,

(7.10)
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the conjugate of f0 can be used to write the dual function for (7.10) as

g(λ, ν) = inf
x

(
f0(x) + λ⊤(Ax− b) + ν⊤(Cx− d)

)
(7.11)

= −b⊤λ− d⊤ν + inf
x

(
f0(x) + (A⊤λ+ C⊤ν)⊤x

)
(7.12)

= −b⊤λ− d⊤ν − f∗
0 (−A⊤λ− C⊤ν). (7.13)

The domain of g follows from the domain of f∗
0 :

dom g = {(λ, ν)| −A⊤λ− C⊤ν ∈ dom f∗
0 }.

Let us go back to the conjugate function of f0, which is defined as

f∗
0 (Y ) = sup

X≻0
(⟨Y,X⟩+ log detX) .

We first show that ⟨Y,X⟩+ log detX is unbounded above unless Y ≺ 0. If Y ⊀ 0,
then Y has an eigenvector v, with ∥v∥2 = 1, and eigenvalue λ ≥ 0. Taking X =
I + tvv⊤ we find that

⟨Y,X⟩+ log detX = trY + tλ+ log det(I + tvv⊤) = trY + tλ+ log(1 + t),

which is unbounded above as t→∞. Now consider the case Y ≺ 0. We can find the
maximizing X by setting the gradient with respect to X equal to zero:

∇X(⟨Y,X⟩+ log detX) = Y +X−1 = 0,

which leads to X = −Y −1. Therefore, we have

f∗
0 (Y ) = log det(−Y )−1 − r (7.14)

with dom f∗
0 = −Sr++.

Applying the result in (7.13), the dual function for problem (7.9) is given by

g(λ, ν) =

{
log det

(
λJ −∑

i,j

νi,jEi,j

)
+ r − λa if λJ −∑

i,j

νi,jEi,j ≻ 0,

∞ otherwise,
(7.15)

with λ ∈ R+ and ν ∈ Rr×r
+ . Let λ∗ = r

a , ν∗i,j = r
a if i ̸= j, ν∗i,j = 0 if i = j and

X∗ = a
r I. We have f0(X

∗) = g(λ∗, ν∗), meaning that there is no duality gap and that
X∗ is a solution of (7.9). Finally, X∗ is the unique solution because f0 is strongly
convex.

Due to this result and to the fact that e⊤HH⊤e = n, if n = dr where d ∈ N∗, then
increasing λ will make HH⊤ converge to a diagonal whose elements are all equal to d.
In other words, the rows of H will be mutually orthogonal. The simplex constraint on
the columns of H and the fact that the rows are mutually orthogonal will impose that
H(i, j) ∈ {0, 1}. The norm of each row is then just the square root of the number of
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non-zero elements in the corresponding row. From the HU point of view, one pixel will
be assigned to only one material. This is equivalent to a hard clustering where every
cluster should be of the same size. On a side note, if n is not a multiple of r, then
the norm of each row will have to be different. The clustering behavior of MaxVol
NMF is interesting and offers more control over the sparsity of the decomposition than
MinVol NMF. Also, maximizing the volume of H indirectly minimizes the volume of
W without the drawback of potentially setting a useful endmember to zero due to its
low reflectance. However, the fact that increasing λ tends to an even clustering is a
clear weakness. See the experiment on Figure 7.3 on Samson. Increasing λ intensifies
the clustering, until a hard clustering is achieved with λ = 50. Increasing λ removes
some of the false positives for water, but not all of them. This is probably because
there are more pixels containing trees than water or stone in this dataset. Correctly
assigning the water false positives to tree will unbalance even more the size of the
clusters, though MaxVol NMF favors clusters of the same size. Also, the improvement
of the abundance map of the water is at the cost of a hard clustering, while a soft
clustering would be preferable to properly unmix soil and tree.

In Section 7.4, we present an improved variant of MaxVol NMF where the volume
of the row wise normalized H is maximized instead. This variant is an improvement
as it is not biased towards clusters of the same size.

Remark 7.1 About the results in Figure 7.3:

• λ is tuned using [82], in the same way we used it in Section 6.4.3.

• In Section 7.3 we show two different algorithms to solve MaxVol NMF. The
abundance maps displayed on Figure 7.3 are the same regardless of the used al-
gorithm, except for λ = 50 where the adaptive gradient method crashes, probably
due to some numerical issues. The ADMM based algorithm still works well with
λ = 50.

7.3 Solving MaxVol NMF

The most common strategy to solve problems like Eq. (7.8) is to use an alternated
block optimization scheme. Consider blocks of variables, while updating one block, fix
the others. When the update is finished, repeat the same process for the next block.
Here, we only consider two blocks: W and H. The main difficulty in solving Eq. (7.8)
holds in the −λ logdet term. Since X → logdet(X) is concave, it is easy to derive a
surrogate for Eq. (6.2) relatively to W whose gradient is Lipschitz continuous. The
first-order Taylor approximation at the current iterate W k is enough, as it has been
seen in Section 6.3.1.1. It is then possible to update W by minimizing the obtained
Lipschitz surrogate. This is exactly equivalent to performing a projected gradient
step with a step size equal to the inverse of the Lipschitz constant of the gradient
of the surrogate, that is 1

∥HH⊤+λ(Wk⊤Wk+δI)−1∥ . Since − logdet(.) is not concave, it
prevents us from using for Eq. (7.8) the same update strategy that has been derived
for Eq. (6.2). In this section, we propose several algorithms to solve Eq. (7.8). The
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(a) λ = 0.5

(b) λ = 5

(c) λ = 10

(d) λ = 50

Figure 7.3: Abundance maps of MaxVol NMF on Samson, depending on λ.
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first algorithm in Section 7.3.1 is adapted from [73]. Its core idea is to approximate
the local Lipschitzness by using the previous iterate and to compute the correspond-
ing Lipschitz gradient descent. The second algorithm is based on the Alternating
Direction Method of Multipliers (ADMM).

Let us note that relatively to W , another choice could be to consider each of its
columns as a block, also known as HALS [40]. As the update of W is not the main
concern while solving Eq. (7.8) with an alternated block scheme, we will not explore
this possibility. Note also that HALS could not be used to update H. It would
alternatively update the rows of H, although they depend on each other because of
the probability simplex constraint H ∈ ∆r×n.

7.3.1 Adaptive accelerated gradient descent

Our first proposed algorithm for Eq. (7.8) relies on [73, Alg. 2]. This algorithm uses
the previous iterate to approximate the local Lipschitzness and derive an appropriate
step size. The previous iterate is also used to induce some extrapolation. The only
knowledge that is needed from f is its gradient. It should be noted that [73, Alg. 2]
is only designed for a one block variable, that is, all variables are updated at the same
time. In our case, it would mean that [W⊤, H] ∈ Rr×(m+n) should be updated all at
once. Most gradient based algorithm for constrained matrix factorization are using
a two block alternating strategy, performing several updates on W and then several
updates on H. By doing so, a gradient based two block alternating algorithm can save
computation time by precomputing some matrix operations that remain unchanged
during the update of one block. We will follow this common two block strategy and,
as it has been said before, all we need are the gradients:

∇f(W ) =
∂f

∂W
(W )

= (WH −X)H⊤,
(7.16)

∇f(H) =
∂f

∂H
(H)

= W⊤(WH −X)− 2λ(HH⊤ + δI)−1H.
(7.17)

Our adaptation of [73, Alg. 2] with a two block strategy is given in Algorithm 7.1.

Remark 7.2 The adaptive part is mostly useful for the update of H. In order to
update W any other algorithm could be used instead of the while loop in line 4.
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Algorithm 7.1: Adgrad2
Input: data matrix X ∈ Rm×n, initial factors Wo ∈ Rm×r

+ and Ho ∈ ∆r×n

1 ΓWo
= ∥HoH

⊤
o ∥, γWo

= ΓWo

−1, θW = ΘW = 109,W o = Wo,W = W =
[Wo − 10−6∇f(Wo)]+

2 ΓHo = ∥W⊤
o Wo∥, γHo = ΓHo

−1, θH = ΘH = 109, Ho = Ho, H = H =
[Ho − 10−6∇f(Ho)]∆r×n

3 for k = 1, 2, . . . do
4 while stopping criteria not satisfied do

5 γW = min

(
γWo

√
1 + θW

2 , ∥W−W o∥F

2∥∇f(W )−∇f(W o)∥F

)

6 ΓW = min

(
ΓWo

√
1 + ΘW

2 , ∥∇f(W )−∇f(W o)∥F

2∥W−W o∥F

)

7 W = [W − γW∇f(W )]+
8 θW = γW /γWo ,ΘW = ΓW /ΓWo

9 W o = W

10 W = W + 1−√
γWΓW

1+
√
γWΓW

(W −Wo)

11 Wo = W
12 γWo

= γW ,ΓWo
= ΓW

13 while stopping criteria not satisfied do

14 γH = min

(
γHo

√
1 + θH

2 , ∥H−Ho∥F

2∥∇f(H)−∇f(Ho)∥F

)

15 ΓH = min

(
ΓHo

√
1 + ΘH

2 , ∥∇f(H)−∇f(Ho)∥F

2∥H−Ho∥F

)

16 H = [H − γH∇f(H)]∆r×n

17 θH = γH/γHo
,ΘH = ΓH/ΓHo

18 Ho = H

19 H = H + 1−√
γHΓH

1+
√
γHΓH

(H −Ho)

20 Ho = H
21 γHo = γH ,ΓHo = ΓH
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7.3.2 Alternating direction method of multipliers (ADMM)
for the MaxvolMF problem

Let us consider the following ADMM reformulation of Eq. (7.8):

min
W,H,Y,Λ

L(W,H, Y,Λ) :=
1

2
∥X −WH∥2F − λ logdet(Y + δI) + ⟨Y −HH⊤,Λ⟩

+
ρ

2
∥Y −HH⊤∥2F

s.t. W ≥ 0, H ∈ ∆r×n.
(7.18)

According to [9], the ADMM algorithm consists of the following updates:

W k+1 = argmin
W≥0

L(W,Hk, Y k,Λk) (7.19)

Hk+1 = argmin
H≥∆r×n

L(W k+1, H, Y k,Λk) (7.20)

Y k+1 = argmin
Y

L(W k+1, Hk+1, Y,Λk) (7.21)

Λk+1 = Λk + ρ(Y k+1 −Hk+1Hk+1⊤) (7.22)

Updating W Like in Section 7.3.1, the update for W can be computed through
any algorithm for constrained convex problems, as Eq. (7.19) is equivalent to

W k+1 = argmin
W≥0

1

2
∥X −WHk∥2F ,

where W → 1
2∥X −WHk∥2F is convex. Here we propose to use TITAN [51] with a

Lipschitz surrogate, like in Section 6.3. The resulting update for W k+1 is detailed
in Algorithm 7.2

Algorithm 7.2: Update of W with TITAN
Input: α1, X,Hk,W,Wo

Output: W

1 LW = ∥HkHk⊤∥
2 while stopping criteria not satisfied do
3 α0 = α1

4 α1 = 1
2 (1 +

√
1 + 4α2

0)

5 β = α0−1
α1

6 W = W + β(W −Wo)
7 Wo = W

8 W = [W + 1
LW

(XH⊤ −WHkHk⊤)]+
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Updating H We propose two ways of updating H. The first one consists of solving
directly Eq. (7.20) with the adaptive accelerated gradient descent algorithm described
in Section 7.3.1. The second one, that we will describe here, consists of deriving a
non-Euclidean gradient method. Basically, we find a Bregman surrogate of H →
L(W k+1, H, Y k,Λk) := L(H) and update H by minimizing this surrogate instead.
The main motivation to use such a surrogate is that there does not exist a Lipschitz
surrogate of L relatively to H. The gradient of H → L(W k+1, H, Y k,Λk) is clearly
not Lipschitz continuous because the gradient of ∥Y −HH⊤ − δI∥2F relatively to H
is cubic. Although H → L(H) is not L-smooth, using the framework of [7], we can
show that it is smooth relatively to the quartic norm kernel proposed in [28].

Definition 7.2 (Bregman distance)

Dh(x, y) = h(x)− h(y)− ⟨∇h(y), x− y⟩
with h a properly chosen convex function, dubbed a distance kernel.

Note that Dh is not a proper distance as it is asymmetric.

Definition 7.3 (Relative smoothness [7]) We say that a differentiable function
f : Rr×n → R is L-smooth relatively to the distance kernel h if there exists L > 0
such that for every X,Y ∈ Rr×n,

f(X) ≤ f(Y ) + ⟨∇f(Y ), X − Y ⟩+ LDh(X,Y ).

If f is twice differentiable, L-smoothness relatively to h is equivalent to

∇2f(X)[U,U ] ≤ L∇2h(X)[U,U ] ∀X,U ∈ Rr×n,

where ∇2f(X)[U,U ] denotes the second derivative of f at X in the direction U .

First, we focus on the relative smoothness of the quartic term. According to [28] we
have

1

2
∥Y −HH⊤∥2F := g(H) ≤ g(Hk) + ⟨∇g(Hk), H −Hk⟩+Dh(H,Hk) (7.23)

where ∇g(Hk) = 2(HkHk⊤ − Y )Hk, and h(H) = α
4 ∥H∥4F + σ

2 ∥H∥2F with α = 6 and
σ = 2∥Y ∥2. Substituting (7.23) in (7.18),

L(H) ≤ uHk(H) :=
1

2
∥X −WH∥2F − ⟨HH⊤,Λ⟩+ ρ⟨∇g(Hk), H⟩+ ρh(H)

− ρ⟨∇h(Hk), H⟩+ CH (7.24)

where CH is a constant relatively to H. Compute the second directional derivative of
uHk

∇2uHk(H)[U,U ] =⟨(W⊤W − 2Λ⊤)U,U⟩+ ρσ∥U∥2F + ρα(∥H∥2F ∥U∥2F + 2⟨H,U⟩2),
≤ρα(∥H∥2F ∥U∥2F + 2⟨H,U⟩2) + (∥W⊤W − 2Λ⊤∥2 + ρσ)∥U∥2F ,

=∇2

(
α̃

4
∥H∥4F +

σ̃

2
∥H∥2F

)
[U,U ], (7.25)
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where α̃ = ρα and σ̃ = ρσ + ∥W⊤W − 2Λ⊤∥2. From (7.25) and (7.24), H → L(H) is
1-smooth relatively to the kernel h̃ : H → α̃

4 ∥H∥4F + σ̃
2 ∥H∥2F . More explicitly,

L(H) ≤ uHk(Hk) + ⟨∇uHk(Hk), H −Hk⟩+Dh̃(H,Hk). (7.26)

The update for H is then obtained by minimizing the aforementioned surrogate

Hk+1 = argmin
H∈∆r×n

{
⟨∇uHk(Hk), H⟩+ h̃(H)− ⟨∇h̃(Hk), H⟩

}
,

= argmin
H∈∆r×n

{
tk(H) := h̃(H)− ⟨Qk, H⟩

}
, (7.27)

where Qk = ∇h̃(Hk) − ∇uHk(Hk). This is equivalent to the Bregman proximal
iteration map described in [28] with a step size equal to 1.

Corollary 7.1 The solution of (7.27) is of the form

Hk+1 =
1

α̃∥Hk+1∥2F + σ̃
[Qk − eν⊤]+,

where ν ∈ Rn.

Proof 7.2 Consider the Lagrangian of (7.27)

Ltk(H,Λ, ν) = tk(H)− ⟨H,Λ⟩+ ⟨H⊤e− e, ν⟩

where Λ ∈ Rr×n
+ and ν ∈ Rn. According to the KKT optimality conditions:





Hk+1 ∈ ∆r×n,

⟨Λ∗, Hk+1⟩ = 0,

∇tk(Hk+1)− Λ∗ + eν∗⊤ = 0,

(7.28)

(7.29)

(7.30)

⇔





Hk+1 ∈ ∆r×n,

⟨∇h̃(Hk+1)−Qk + eν∗⊤, Hk+1⟩ = 0,

∇h̃(Hk+1)−Qk + eν∗⊤ ≥ 0,

(7.31)

(7.32)

(7.33)

where (7.32) is coming from substituting (7.30) in (7.29), and (7.33) is coming from
the fact that Λ∗ ≥ 0. First, combining (7.32) and (7.33), we have

(∇h̃(Hk+1)−Qk + eν∗⊤) ◦Hk+1 = 0 (7.34)

where ◦ is the Hadamard product. For all p in 1, . . . , r, for all j in 1, . . . , n,

1. if Qk(p, j) − ν∗j < 0, ∇h̃(Hk+1)(p, j) − (Qk(p, j) − ν∗j ) > 0 because ∇h̃(H) =

(α̃∥H∥2F + σ̃)H ≥ 0, then (7.34) ⇒ Hk+1(p, j) = 0,

2. if Qk(p, j) − ν∗j = 0, ∇h̃(Hk+1)(p, j) = (α̃∥Hk+1∥2F + σ̃)Hk+1(p, j) so (7.34)
⇒ Hk+1(p, j) = 0,



Chapter 7. Maximum-Volume Nonnegative Matrix Factorization 115

3. if Qk(p, j) − ν∗j > 0, ∇h̃(Hk+1)(p, j) = (α̃∥Hk+1∥2F + σ̃)Hk+1 > 0 by (7.33),
then (7.34) ⇒ ∇h̃(Hk+1)(p, j) − (Qk(p, j) − ν∗j ) = 0 ⇔ Hk+1(p, j) =
Qk(p,j)−ν∗

j

α̃∥Hk+1∥2
F+σ̃

.

In the end, Hk+1 = 1
α̃∥Hk+1∥2

F+σ̃
[Qk − eν∗⊤]+.

In particular, ν in Corollary 7.1 is such that e⊤[Qk−eν⊤]+ = (α̃∥Hk+1∥2F+σ̃)e⊤ ∈ Rn

since e⊤Hk+1 = e⊤. In other words, [Qk − eν⊤]+ projects Q on a scaled probability
simplex where the scaling is equal to α̃∥Hk+1∥2F+σ̃. How do we find ν since it depends
on Hk+1? We propose to solve this inexactly with a simple fixed point algorithm
where ∥Hk+1∥2F is the variable to optimize. The idea is that when ∥Hk+1∥2F is fixed,
ν has a closed form solution. So for a fixed ∥Hk+1∥2F we compute ν, then we update
∥Hk+1∥2F according to the new ν and repeat this process. The algorithm is described
in Algorithm 7.3. When ∥Hk+1∥2F is fixed, there are several algorithms that can
compute exactly ν. In [49], the proposed algorithm requires to sort the entries of each
column of Qk. The complexity of this algorithm is mainly due to this sorting. Once
the sorting is completed, ν is found just by computing n times the max between r
entries, which is linear. There exist faster algorithms like [22] that do not rely on
sorting. However, note that Qk is not changing in Algorithm 7.3. Hence, using [49]
to compute ν in line 2 only has a linear complexity if Qk is sorted only once before
the while loop. In our code, ϵ is fixed to 10−6 and the while loop cannot exceed 100
iterations.

Algorithm 7.3: Algorithm for (7.27)

Input: Qk, α̃, σ̃
init: ∥Hk+1∥2F , ν
Output: Hk+1

1 while
∥Hk+1∥2

F−
∥∥∥∥ 1

α̃∥Hk+1∥2
F

+σ̃
[Qk−eν⊤]+

∥∥∥∥2

F

∥Hk+1∥2
F

> ϵ do
2 compute ν such that 1

α̃∥Hk+1∥2
F+σ̃

[Qk − eν⊤]+ ∈ ∆r×n

3 update ∥Hk+1∥2F to
∥∥∥ 1
α̃∥Hk+1∥2

F+σ̃
[Qk − eν⊤]+

∥∥∥
2

F

4 Hk+1 = 1
α̃∥Hk+1∥2

F+σ̃
[Qk − eν⊤]+

Updating Y Recall the ADMM update of Y k+1, that is

Y k+1 = argmin
Y≻−δI

−λ logdet(Y + δI) + ⟨Y,Λ⟩+ ρ

2
∥Y −HH⊤∥2F . (7.35)

Consider the change of variable Z = Y + δI,

Y k+1 + δI = argmin
Z≻0

−λ logdet(Z) +
ρ

2

∥∥∥∥Z −
(
HH⊤ + δI − 1

ρ
Λ

)∥∥∥∥
2

F

. (7.36)
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According to [105, Lemma 2.1], (7.36) has a closed form solution which is

Φ+
λ
ρ

(
HH⊤ + δI − 1

ρ
Λ

)

where Φ+
γ (x) =

1
2 (
√
x2 + 4γ + x) and for a symmetric A with an eigen value decom-

position A = PDP⊤ and D = Diag(d), Φ+
γ (A) = P Diag(Φ+

γ (d))P
⊤ where Φ+

γ (d) is
applied element-wise. In the end,

Y k+1 = Φ+
λ
ρ

(
HH⊤ + δI − 1

ρ
Λ

)
− δI.

7.3.3 Comparison of the two algorithms

Here, we compare the different proposed algorithms for MaxVol NMF, both on syn-
thetic datasets and real datasets. The results are averaged over 10 runs and are
presented on Figure 7.5. For the synthetic dataset, W is drawn following a uniform
distribution in [0, 1] and H is such that each of its column is drawn following a Dirich-
let distribution where the concentration parameters are all equal to 0.2. The input
matrix is then just X = WH. A different X is drawn at each run. The compared
algorithms are Adgrad2 (Section 7.3.1), ADMM (Section 7.3.2) and ADMM+Adgrad.
ADMM+Adgrad has the same formulation as in (7.18), but the update for H (7.20) is
performed using the adaptive gradient descent method instead of minimizing the pro-
posed Bregman surrogate. Regardless of the dataset and of the algorithm, the number
of iterations is fixed to 500, the number of inner iterations1 is fixed to 20, λ and δ
are fixed to 1, the automatic tuning of λ is switched off because it changes the cost
function. In Figure 7.5, on both synthetic data and Moffett, ADMM with ρ = 0.01
has the best convergence speed and the lowest error. Still on synthetic data and Mof-
fett, we can see how the proposed Bregman surrogate provides a nice approximation
of the original ADMM formulation (7.18). For equal ρ’s, ADMM always converges
faster and to a lower error than ADMM+Adgrad. This experimentally justifies our
choice for the use of a Bregman surrogate to update H in the ADMM formulation
of MaxVol NMF. However, this is at the cost of a higher computation time, due to
Algorithm 7.3, as it can be seen in the reported average times in Table 7.2. One can
always increase the tolerance threshold ϵ in Algorithm 7.3, but should remain careful.
Let us increase ϵ to 10−3. The computation time of ADMM with ρ = 0.01 is greatly
improved, as a run on the synthetic dataset only lasts 2.44s in average. However, for
ρ = 0.1 the algorithm diverges, as it can be seen on Figure 7.4, and the computation
time is increased to 6.90s in average. Finally, ADMM is not always better than Ad-
grad2, like with Samson on Figure 7.5c. Reasons as to why one algorithm would be
better than the other are, up to now, unknown.

1This value represents how many times H is updated in a row before updating W , and vice-versa.
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Alg. Adgrad2 ADMM+Adgrad ADMM+Adgrad ADMM ADMM
ρ = 0.01 ρ = 0.1 ρ = 0.01 ρ = 0.1

Time (s) 3.67 2.88 2.39 5.33 23.5

Table 7.2: Average time per run on synthetic datasets
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Figure 7.4: ADMM on synthetic dataset with ϵ = 10−3
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(a) Synthetic dataset X ∈ R50×500
+ where rank+(X) = 5
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(b) Moffett
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(c) Samson
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Figure 7.5: Comparison of algorithms for MaxVol NMF on various datasets
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7.4 Normalized MaxVol NMF

In Section 7.2, we mentioned that a drawback of MaxVol (7.8) is its bias towards an
even clustering. Here, we introduce a normalized variant of MaxVol NMF, where the
volume of the row wise normalized H is maximized instead of the standard volume:

min
W,H

f(W,H) :=
1

2
∥X −WH∥2F − λ logdet(H̃H̃⊤ + δI)

s.t. W ≥ 0, H ≥ 0,

H̃ = S−1H where S = Diag(∥H(1, :)∥2, . . . , ∥H(r, :)∥2).

(7.37)

This model is interesting for several reasons.

When λ is increasing, H̃H̃⊤ converges to the identity. In other words, increasing
λ acts in favor of mutually orthogonal rows of H. Unlike MaxVol NMF, the norm of
the rows of H can be anything since it is H̃H̃⊤ that converges to the identity and
not HH⊤. In fact, Normalized MaxVol NMF can be viewed as a continuum between
NMF and Orthogonal NMF (ONMF). With λ = 0, NMF is retrieved. Increasing λ
progressively retrieves ONMF. Let us prove this asymptotic behavior of Normalized
MaxVol. To do so, we show that the problem

minimize
X ∈ Sr

f0(X) = log detX−1

subject to Diag(X) = e,

0 ≤ X ≤ 1,

(7.38)

where dom f0 = Sr++ has X = I as a unique minimizer. Again, we solve this problem
through its dual using the conjugate of f0, which has already been computed in (7.14).
First, (7.38) can be reformulated as

minimize
X ∈ Sr

f0(X) = log detX−1

subject to ⟨Eii, X⟩ = 1 for all i,
⟨−Eij , X⟩ ≤ 0 for all i, j,
⟨Eij , X⟩ ≤ 1 for all i, j.

(7.39)

Using again (7.13), we can write the dual of (7.38) with the conjugate of f0:

g(λ, γ, ν) =

{
log det

(
Diag(ν) + γ − λ

)
+ r − ⟨J, γ⟩ − e⊤ν if Diag(ν) + γ − λ ≻ 0,

∞ otherwise,
(7.40)

where λ ∈ Rr×r
+ , γ ∈ Rr×r

+ and ν ∈ Rr. Let λ∗ = 0, γ∗ = 0, ν∗ = e and X∗ = I. We
have f0(X

∗) = g(λ∗, γ∗, ν∗) = 0, meaning that there is no duality gap and that X∗

is a solution of (7.38). Finally, X∗ is the unique solution because f0 is strongly convex.
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It is possible to control the range of the volume criterion via δ. When δ > 0, we
have

logdet(H̃H̃⊤ + δI) ∈
[
log(1 + rδ−1) + r log δ, r log(1 + δ)

]

where the minimum and maximum are respectfully reached when H̃H̃⊤ = J and
H̃H̃⊤ = I. The parameter δ then controls how larger can the volume of H̃ be, while
λ still balances the reconstruction error and the volume criterion. By increasing δ,
the dynamical range is reduced, as it can be seen on Figure 7.6. With respect to λ
and the reconstruction error, it is then harder to increase the volume of H̃. In the
context of HU, δ can be seen as a mixture tolerance parameter, while λ is more like
a noise level estimation parameter.

Figure 7.6: Value r log(1 + δ)− log(1 + rδ−1)− r log δ depending on δ for various r’s.
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Another advantage of the normalized formulation of MaxVol NMF is the removal
of the simplex structure on H. Let us remind that this simplex structure is not
without loss of generality. In HU for instance, if there are two pure pixels of tree but
one of them receives more light than the other, then a perfect unmixing would require
a different grass endmember for each one. In other words, the simplex structure
might require a larger rank. Also, the projection on the probability simplex is costly.

In spite of the benefits the normalized variant brings, we “lose” two aspects of the
vanilla MaxVol NMF. The most notable one is the identifiability. It remains unknown
if Normalized MaxVol NMF is identifiable or not. We also lose the possibility to solve
Normalized MaxVol NMF with the same ADMM formulation that we used for MaxVol
NMF. We could not find a kernel that would provide us with a Bregman surrogate.
Even if we did, the considered Bregman surrogate would then need to be nice enough
to be easily solved. This is not a big issue since we can still solve it with the adaptive
accelerated gradient descent method, which is described in Section 7.5.
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7.5 Solving Normalized MaxVol NMF

Here, we propose to solve Normalized MaxVol NMF (7.37) with the adaptive
accelerated gradient descent method, already introduced in Section 7.3.1. Like it
has been said in Section 7.3.1, we only need to know the gradient. Hence, in this
section, we only describe the computation of the gradient. The algorithm is exactly
the same as Algorithm 7.1, except for the projected gradient step in line 16 that
should be replaced by H = [H−γH∇f(H)]+ because there is no simplex structure in
the normalized variant. Let us now compute the gradient of f in (7.37) relatively to H.

Knowing that

∂H̃(k, :)

∂H(k, j)
=

(
−H(k,1)H(k,j)

∥H(k,:)∥3 · · · ∥H(k,:)∥2−H(k,j)2

∥H(k,:)∥3 · · · −H(k,n)H(k,j)
∥H(k,:)∥3

)
(7.41)

=
1

∥H(k, :)∥3
(
∥H(k, :)∥2e⊤j −H(k, j)H(k, :)

)
, (7.42)

and using the chain rule, we have that

∂ logdet(H̃H̃⊤ + δI)

∂H(k, j)
=

〈
∂ logdet(H̃H̃⊤ + δI)

∂H̃
,

∂H̃

∂H(k, j)

〉
(7.43)

=

〈
2(H̃H̃⊤ + δI)−1H̃,

1

∥H(k, :)∥Ek,j −
H(k, j)

∥H(k, :)∥3 ekH(k, :)

〉
(7.44)

=
1

∥H(k, :)∥⟨2(H̃H̃⊤ + δI)−1H̃, Ek,j⟩

− 1

∥H(k, :)∥⟨2(H̃H̃⊤ + δI)−1, ekH̃(k, :)H̃⊤⟩H̃(k, j).

(7.45)

In the end,

∂ logdet(H̃H̃⊤ + δI)

∂H
= 2S−1

[
(H̃H̃⊤ + δI)−1 −Diag

(
(H̃H̃⊤ + δI)−1H̃H̃⊤

)]
H̃

(7.46)
and

∂f

∂H
= W⊤(WH −X)− 2λS−1

[
(H̃H̃⊤ + δI)−1 −Diag

(
(H̃H̃⊤ + δI)−1H̃H̃⊤

)]
H̃.

(7.47)
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7.6 Performance of Normalized MaxVol NMF on
Hyperspectral Unmixing

In this section, we evaluate the performance of Normalized MaxVol NMF on famous
hyperspectral datasets. Results can be compared with [112] where some ground-truths
for a variety of known hyperspectral datasets are proposed. Even if these are called
ground-truths, hyperspectral ground-truths do not exist except if the measurements
are performed in a controlled environment. Consider the proposed abundance maps
for Urban with four endmembers in [112]. Clearly, some trees are detected where in
fact it should be a mixture of grass and soil. Some rooftops are also detected where
it should be soil. Still, the author used as many a priori knowledge as possible to
provide these abundance maps and endmembers that are probably close to reality.
Our message here is that ground-truths for these hyperspectral datasets should be
interpreted with caution. On Moffett and on Samson, our model clearly outperforms
MinVol NMF and MaxVol NMF, see Figures 7.7 and 7.8. Water, soil and tree are
correctly separated and their spectral signatures are very close to the expected ones
in [112].
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Figure 7.7: Abundance maps and endmembers (water, tree and soil) by Normalized
MaxVol NMF on Moffett, with λ = 1 and δ = 0.5.

Now that we very briefly assured that our model works on simple datasets, let us
comment on one of its interesting features. Consider the Samson dataset again, but
with r = 6. With MinVol NMF, the excessive endmembers should be brought to zero
by tuning λ and δ. Otherwise, MinVol NMF would be over-parameterized and would
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Figure 7.8: Abundance maps and endmembers (water, soil and tree) by Normalized
MaxVol NMF on Samson, with λ = 1 and δ = 0.5.

just learn the noise, which would output a non-interpretable matrix factorization. On
Figure 7.9, we can see that increasing the rank above the standard r = 3 for Samson
allowed MaxVol NMF to learn more spectral varieties. We can see three different
kinds of tree and two different kinds of soil. We can then add together the rows
of H that corresponds to varieties of the same endmembers. The resulting merged
abundance maps are available on Figure 7.10. One can notice how close are the
abundance maps on Figure 7.10 and Figure 7.8 to each other. Actually, results with
r = 6 are more satisfying for the water unmixing. On Figure 7.8, some small artifacts
of false-positives can be seen, especially in the bottom right corner of the abundance
map corresponding to water. These artifacts are not visible on Figure 7.10. It would
seem that MaxVol NMF allows to increase the number of parameters in order to
improve the results in a controlled manner, at least in the context of HU.

Let us confirm this behavior on the Urban dataset. This dataset is particularly
insightful in this case because it is known for having meaningful unmixing results for
r = 4, 5 and 6. Results are displayed on Figure 7.11. With r = 4, we have roof, grass,
a combination of asphalt and soil, and tree. With r = 5, the distinction is being made
between asphalt and dirt. With r = 6, the distinction is being made between grass
and dry grass. Typical ground-truths with r = 6 rather suggest a distinction between
two kinds of roof, instead of grass and dry grass. Here our model propose another
interpretation for r = 6 which still makes sense.

The last experiment is on the Jasper dataset, where ground-truths suggest four
endmembers: tree, water, soil and road. Unmixing algorithms often struggle to cor-
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rectly separate water and road on Jasper. On Figure 7.12, we can see that our model
achieves not ideal but nonetheless decent results. The issue with our model here is
that in order to improve the distinction between water and road, λ should be in-
creased. However, increasing λ might not be the best option here. There are many
areas where tree and soil are heavily mixed, and increasing λ will converge to ONMF,
which cannot properly unmix these areas. One way to circumvent that is to increase
the rank. Results with r = 5 are displayed on Figure 7.13. The additional endmember
is in fact a combination of tree and soil. With this trick, water and road are properly
identified without compromising the quality of the other endmembers.
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Figure 7.9: Abundance maps and endmembers (tree, soil and water) by Normalized
MaxVol NMF with r = 6 on Samson, with λ = 0.5 and δ = 0.5.

Remark 7.3 On the results of our model, only the shape of the spectral signatures
should be considered when comparing results, while the amplitude of the spectral sig-
natures are to be considered with a pinch of salt due to the scaling ambiguity between
W and H. Let us remind that Normalized MaxVol NMF is not simplex structured.
In fact, we could take advantage of this scaling ambiguity to improve the condition
number when updating a block, but this is not the goal of this chapter.

7.7 Conclusion

In this chapter, we introduced MaxVol NMF, an analogue version of MinVol NMF
where the volume of H is maximized instead of the volume of W being minimized.
Just like MinVol NMF, this new model is identifiable. We also developed two different
algorithms to solve MaxVol NMF. We introduced Normalized MaxVol NMF, a variant
where the volume of the row wise normalized H is maximized. This model creates a
continuum between NMF and ONMF and exhibits better results than MinVol NMF
on hyperspectral unmixing. Its identifiability remains an open question. Similarly,
a normalized version of MinVol NMF could be interesting. This could be seen as
a minimum aperture NMF. One could say that this already exists through MinVol
NMF with the constraint e⊤W = e⊤, which is partially true. For a fixed aperture,
the volume of W is changing depending on where the columns of W are on the
probability simplex. In other words, there is a little bias drawing the columns of W
towards e, which is not the case with a normalized version of MinVol NMF. Normalized
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Figure 7.10: Abundance maps grouped by endmember varieties and endmembers
(tree, soil and water) by Normalized MaxVol NMF with r = 6 on Samson, with
λ = 0.5 and δ = 0.5.

MaxVol NMF and Normalized MinVol NMF could be combined to control the spectral
variability when increasing the rank. Finally, the performance of Normalized MaxVol
NMF should be evaluated on other kinds of data.
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(a) r = 4

0 50 100 150
0

0.05

0.1

0.15

0.2

0 50 100 150 0 50 100 150 0 50 100 150

(b) r = 5
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(c) r = 6
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Figure 7.11: Abundance maps and endmembers (roof, tree, dry grass, asphalt, soil,
grass) by Normalized MaxVol NMF on Urban, with λ = 0.5 and δ = 0.5, depending
on r.



Chapter 7. Maximum-Volume Nonnegative Matrix Factorization 127

0 100 200
0

0.1

0.2

0.3

0 100 200 0 100 200 0 100 200

Figure 7.12: Abundance maps and endmembers (tree, water, soil, road) by Normalized
MaxVol NMF with r = 4 on Jasper, with λ = 2 and δ = 1.
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Figure 7.13: Abundance maps and endmembers (tree, soil, water, tree+soil, road) by
Normalized MaxVol NMF with r = 5 on Jasper, with λ = 0.5 and δ = 0.5.
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Chapter 8

Highlight of the contributions
and discussions

Andrew Prahlow - Final Voyage

In the conclusion, we first summarize the contributions of this thesis. We then discuss
perspectives that could follow this work.

Summary

The three main motivations of this thesis were the applications, algorithms and theory
related to identifiable volume-based regularized matrix factorization models. Except
for separable NMF in Chapter 5, all studied models can be seen as volume-regularized
models. With BSSMF, in Chapter 3, the columns of W lie in a chosen hyperrectangle
and the columns of H lie in the probability simplex. With PMF, in Chapter 4, the
rows of W and the columns of H lie in respective chosen polytopes. For BSSMF
and PMF, the volume regularization is in fact a hard constraint. Such constraint
can always be translated to a regularization term, using an indicator function that is
added to the cost function. For instance, the constraint H ∈ ∆r×n can be replaced
by adding ι∆r×n(H) to the cost function, where ι∆r×n(H) outputs 0 if every column
of H lies in ∆r, and ∞ otherwise. With MinVol NMF, in Chapter 6, the volume
of the convex hull formed by the columns of W and the origin is minimized. With
MaxVol NMF, in Chapter 7, it is the volume of the convex hull formed by the rows
of H and the origin that is maximized.

In terms of applications, each model is useful for different reasons:

• BSSMF retrieves datalike features when the data is naturally bounded. In a
way, to rephrase the well known “NMF learns parts of objects”, we can say that
“BSSMF learns meaningful objects”. We also showed how BSSMF is a better
basis for recommender systems than NMF.

• Separable NMF is useful when the looked for features are assumed to be data
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points themselves, also called the separability assumption. This is the case in
some blind source unmixing applications when each source is observed purely
at least once, like it can be for hyperspectral unmixing for instance.

• When the separability assumption does not hold anymore, either due to the
noise and outliers or due to the absence of pure endmembers among the data
points, MinVol NMF is often a good alternative. It has also been used for other
applications where NMF already showed its capabilities, like blind source sepa-
ration problems [65], facial feature extraction [111] or community detection [53],
to cite a few. Additionnaly, we showed how the MinVol criterion is promising
as a regularizer for the task of matrix completion.

• MaxVol NMF creates a continuum between NMF and ONMF. It inherits from
the same behaviors as MinVol NMF, but with more control on the sparsity of the
decomposition. Actually, in the inexact case, MinVol NMF directly regularizes
the volume of W , which indirectly affects the volume of H and offers little
control on the sparsity of the decomposition. On the contrary, MaxVol NMF
directly regularizes the volume of H, offering more control on the sparsity of the
decomposition, and indirectly affects the volume of W . In the context of HU,
for datasets close enough to the separability assumption due to noise, MaxVol
NMF seems to exhibit better results than MinVol NMF. It should be noted that
MaxVol NMF is probably less powerful for datasets composed only of mixtures.
MaxVol NMF where the rank is overestimated also shows interesting results to
take into account spectral variability.

Except for PMF1, we developed fast algorithms for every studied model:

• For BSSMF and MinVol NMF, we derived instances from an inertial block
majorization minimization framework for nonsmooth nonconvex optimization,
called TITAN [51].

• For separable NMF, we developed RandSPA. It creates a continuum between
SPA and VCA, which are fast greedy algorithms for column subset selection.
RandSPA uses the best from both worlds if tuned accordingly, that is, the
robustness of SPA and the randomness of VCA.

• For MaxVol NMF, the algorithm developed for MinVol NMF could not be used
anymore. Hence, we developed two algorithms. One is Adgrad2, based on [73],
and the other is based on ADMM, combined with an appropriate Bregman
surrogate adapted from [28].

1The main reason for not developping an algorithm for PMF is that this model is too generic.
It is totally possible to use one of the many Frank-Wolfe based algorithms to derive an alternated
block scheme for any PMF. However, these algorithms are not very fast. For specific polytopes, it is
probably faster to compute the projection on the polytope after a gradient descent step. We empiri-
cally noticed this when the polytopes are the probability simplex, where projected gradient descents
were faster than alternating with Polyhedral Coordinate Descent method with Away steps [76] for
instance.



Chapter 8. Highlight of the contributions and discussions 131

Further research
Applications Recommender systems were the main motivation for creating
BSSMF. Even if we showed that BSSMF performs better than NMF, the question
remains on the competitivity of BSSMF against the state-of-the-art algorithms used
for recommender systems. Of course, BSSMF would need to be customized, e.g., by
adding some wisely chosen regularizers.

Normalized MaxVol NMF has only been used for HU. This model could be useful
in other applications, like document clustering and recommender systems. Also, it
should be noted that the maximum-volume criterion was originally thought as a reg-
ularizer for Bilinear NMF. This combination still needs to be explored. Normalized
MaxVol NMF also opened the path to normalized MinVol NMF. The difference with
vanilla MinVol NMF is that instead of minimizing the volume formed by the end-
members, the aperture between the endmembers is minimized. We mentioned that
this behavior coupled with an overranked normalized MaxVol NMF would be able to
control the spectral variability in HU. This still needs to be addressed properly, as
well as other potential applications for normalized MinVol NMF.

Algorithms We showed that by taking the best run among several, RandSPA out-
performs SPA and VCA. However, RandSPA could be further improved if we could
learn a good Q matrix. A first idea would be to use an internal loop, instead of
running the algorithm several times and saving the best run. The reason is that a
good RandSPA run needs r successive good draws of random Q’s. If at each selection
step we could draw several Q’s directly and chose the best one based on a proper
criterion, this would probably improve the performance of one run of RandSPA. The
main question is then which criterion would be a good one.

Theory All the studied models were either known to be identifiable (separable
NMF and MinVol NMF), or proven in this thesis to be identifiable (BSSMF, PMF,
ℓ1-MinVol NMF, MaxVol NMF). We also studied/mentioned some other variants of
MinVol NMF and MaxVol NMF, namely

• normalized MaxVol NMF (7.2),

• normalized MinVol NMF, whose identifiability result should be similar to that
of normalized MaxVol NMF,

• MinVol NMF with a Frobenius penalty and without simplex structure. This
model was defined for the inexact and missing data case in (6.27). Even when
no data are missing, that is when PΩ is the identity (6.28), better conditions
than Theorem 2.1 are unknown. Experiments in Section 6.4.3 strongly suggest
that there exist milder conditions.

Due to their nonnegative nature, these models are obviously identifiable under Theo-
rem 2.1 that requires both factors to satisfy the SSC. However, it is an open question
to come up with milder conditions than Theorem 2.1 to retain identifiability, like
Theorem 6.1 (that requires only one factor to be SSC).
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In general, the identifiability of many CLRMFs with missing data remains un-
known and quite challenging. Without success, we tried during this thesis to find
reasonable conditions under which separable NMF with missing data would be iden-
tifiable. Of course, it would be possible to use a two-step approach: first complete the
data using the low-rank assumptions (the completion is unique if sufficiently many
entries are observed in random locations, see, e.g., [16]), then apply an identifiable
NMF algorithms on the completed data. However, in general, single-step approaches
perform significantly better in practice.
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